Model-predicted ammonia emission from two broiler houses with different rearing systems

Authors

  • Nilsa Duarte Silva Lima Federal University of Grande Dourados; College of Agrarian Sciences
  • Rodrigo Garófallo Garcia Federal University of Grande Dourados; College of Agrarian Sciences
  • Irenilza Alencar Nääs Federal University of Grande Dourados; College of Agrarian Sciences
  • Fabiana Ribeiro Caldara Federal University of Grande Dourados; College of Agrarian Sciences
  • Roselaine Ponso Federal University of Grande Dourados; College of Agrarian Sciences

DOI:

https://doi.org/10.1590/0103-9016-2014-0217

Abstract

Ammonia (NH3) emissions from broiler production can affect human and animal health and may cause acidification and eutrophication of the surrounding environment. This study aimed to estimate ammonia emissions from broiler litter in two systems of forced ventilation, the tunnel ventilation (TV) and the dark house (DH). The experiment was carried out on eight commercial broiler houses, and the age of the birds (day, d), pH and litter temperature were recorded. Broilers were reared on built-up wood shaving litter using an average flock density of 14 bird m–2. Temperature and relative humidity inside the broiler houses were recorded in the morning during the grow-out period. A factorial experimental design was adopted, with two types of houses, four replicates and two flocks with two replicates each. A deterministic model was used to predict ammonia emissions using the litter pH and temperature, and the day of grow-out. The highest litter temperature and pH were found at 42 d of growth in both housing systems. Mean ambient air temperature and relative humidity did not differ in either system. Mean model predicted ammonia emission was higher in the DH rearing system (5200 mg NH3 m−2h−1 at 42 d) than in the TV system (2700 mg NH3m−2 h−1 at 42 d). TV presented the lowest mean litter temperature and pH at 42 d of growth. In the last week of the broilers’ grow-out cycle, estimated ammonia emissions inside DH reached 5700 mg m−2h−1 in one of the flocks. Ammonia emissions were higher inside DH, and they did not differ between flocks. Assuming a broiler market weight in Brazil of close to 2 kg, ammonia emissions were equivalent to 12 g NH3 bird-marketed−1. Model-predicted ammonia emissions provided comprehensible estimations and might be used in abatement strategies for NH3 emission.

Downloads

Download data is not yet available.

Downloads

Published

2015-10-01

Issue

Section

Animal Science and Pastures

How to Cite

Model-predicted ammonia emission from two broiler houses with different rearing systems. (2015). Scientia Agricola, 72(5), 393-399. https://doi.org/10.1590/0103-9016-2014-0217