Locomotor activity in Aedes aegypti with different insecticide resistance profiles

Autores

DOI:

https://doi.org/10.11606/s1518-8787.2021055002809

Palavras-chave:

Aedes, Insecticide resistance, Locomotion, Disease vectors

Resumo

OBJECTIVE: To evaluate locomotor activity in four field populations of Ae. aegypti with different insecticide resistance profiles from the state of São Paulo for two years. METHODS: This study comprised the susceptible Rockefeller strain and four populations from São Paulo, Brazil: two considered populations with “reduced susceptibility” to pyrethroids (Campinas and Marília), and two “resistant populations” (Santos and Ribeirão Preto). First, 2016 and 2017 eggs from these five populations were hatched in laboratory. Virgin females underwent experiments under laboratory conditions at 25°C, with 12:12h light/dark (LD) photoperiod; 24-hour individual activity was recorded using a locomotor activity monitor (LAM). RESULTS: In females from 2016 field populations, both resistant populations showed significant more locomotor activity than the two reduced susceptibility populations and the Rockefeller strain (p < 0.05). As for females from 2017 field populations, reduced susceptibility populations showed a significant increased locomotor activity than the Rockefeller strain, but no significant difference when compared to Santos resistant population (p > 0.05). CONCLUSIONS: Our results indicate that insecticide-resistant Ae. aegypti populations show increased locomotor activity, which may affect the transmission dynamics of their arboviruses.

Referências

Braks MAH, Honório NA, Lourenço-de-Oliveira R, Juliano AS, Lounibos LP. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J Med Entomol. 2003;40(6):785-94. https://doi.org/10.1603/0022-2585-40.6.785 [ Links ]

Lima-Camara TN. Activity patterns of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) under natural and artificial conditions. Oecologia. 2010;14(3):737-44. [ Links ]

Lounibos LP, Kramer LD. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial capacity for Chikungunya Virus. J Infect Dis. 2016;214(Suppl 5):453-8. https://doi.org/10.1093/infdis/jiw285 [ Links ]

Brasil. Diretrizes nacionais para prevenção e controle de epidemias de dengue. 1st ver. ed. Brasília: Ministério da Saúde, 2009. 162 p. [ Links ]

Severo OP. Eradication of the Aedes aegypti mosquito from the Americas. Yellow fever, a symposium in commemoration of Carlos Juan Finlay; 1955; The Jefferson Medical College of Philadelphia, United States of America: Thomas Jefferson University; 1955. 20 p. [ Links ]

Dick OB, San Martín JL, Montoya RH, del Diego J, Zambrano B, Dayan GH. Review. The History of Dengue Outbreaks in the Americas. Am J Trop Med Hyg. 2012;87(4):584-93. https://doi.org/10.4269/ajtmh.2012.11-0770 [ Links ]

Magalhães RCS. A erradicação do Aedes aegypti: febre amarela, Fred Soper e saúde pública nas Américas (1918-1968). Rio de Janeiro: Editora Fiocruz, 2016. 420 p. https://doi.org/10.7476/9788575414798 [ Links ]

Braga IA, Valle D. Aedes aegypti: histórico de controle no Brasil. Epidemiol Serv Saúde. 2007;16(2):113-8. https://doi.org/10.5123/S1679-49742007000200006 [ Links ]

Brasil. Portaria nº 329, de 02 de setembro de 1985. Diário Oficial da Únião. 1985 Set 2 [cited 2018 Apr 10]. Available from: http://bvsms.saude.gov.br/bvs/saudelegis/mapa_gm/1985/prt0329_02_09_198-5.html [ Links ]

Soderlund DM. Review Pyrethroids, knockdown resistance and sodium channels. Pest Manag Sci. 2008;64(6):610-6. [ Links ]

D'amato C, Torres JPM, Malm O. DDT (Dicloro Difenil Tricloroetano); Toxicidade e Contaminação Ambiental - Uma Revisão. Quim Nova. 2002;25(6):995-1008. https://doi.org/10.1590/S0100-40422002000600017 [ Links ]

Superintendência de Controle de Endemias. Suplemento Especial do Boletim Epidemiológico Paulista. São Paulo: Secretaria da Saúde do Governo do Estado de São Paulo, 2006. 62 p. [ Links ]

Macoris MLG, Andrighetti MTM, Wanderley DMV, Ribolla PEM. Impact of insecticide resistance on the field control of Aedes aegypti in the State of São Paulo. Rev Soc Bras Med Trop. 2014;47(5):573-8. https://doi.org/10.1590/0037-8682-0141-2014 [ Links ]

Macoris MLG, Martins AJ, Andrighetti MTM, Lima JBP, Valle D. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil. PLoS Negl Trop Dis. 2018;12(3):1-18. https://doi.org/10.1371/journal.pntd.0006390 [ Links ]

World Health Organization. Monitoring and managing insecticide resistance in Aedes mosquito populations: interim guidance for entomologists. Geneva: World Health Organization, 2016. 13 p. [ Links ]

Hemingway J, Hanson H. Insecticide Resistance in Insect Vectors of Human Disease. Annu Rev Entomol. 2000;45:371-91. https://doi.org/10.1146/annurev.ento.45.1.371 [ Links ]

Batista E. Evolução de mutações do gene do canal de sódio associadas à resistência tipo Kdr em populações de Aedes (Stegomyia) aegypti do Estado de São Paulo [master's dissertation]. São Paulo: School of Public Health, University of São Paulo, 2012. [ Links ]

Martins AJ, Lima JBP, Peixoto AA, Valle D. Frequency of Val1016Ile mutation in the voltage-gated sodium channel gene of Aedes aegypti Brazilian populations. Trop Med Int Health. 2000;14(11):1351-5. https://doi.org/10.1111/j.1365-3156.2009.02378.x [ Links ]

Linss JGB, Brito LP, Garcia GA, Araki AS, Bruno RV, Lima JBP, et al. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit Vectors. 2014;7(25):1-11. https://doi.org/10.1186/1756-3305-7-25 [ Links ]

Saunders DS. Insect Clocks, Third edition. Elsevier Science. University of Edinburgh. 1st rev. ed. Amsterdam: Elsevier, 2002. 576 p. [ Links ]

Lima-Camara TN, Lima JBP, Bruno RV, Peixoto AA. Effects of insemination and blood-feeding on locomotor activity of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) females under laboratory conditions. Parasit Vectors. 2014;7(304):1-8. https://doi.org/10.1186/1756-3305-7-304 [ Links ]

Lima-Camara TN, Bruno RV, Luz PM, Castro MG, Lourenço-de-Oliveira R, Sorgine MHF, et al. Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females. PLoS One. 2011;6(3):e17690. https://doi.org/10.1371/journal.pone.0017690 [ Links ]

Luz PM, Lima-Camara TN, Bruno RV, Castro MG, Sorgine, MHF, Lourenço-de-Oliveira R, et al. Potential impact of a presumed increase in the biting activity of dengue-virus-infected Aedes aegypti (Diptera: Culicidae) females on virus transmission dynamics. Mem Inst Oswaldo Cruz. 2011;106(6):755-8. https://doi.org/10.1590/S0074-02762011000600017 [ Links ]

Brito LP, Linss JGB, Lima-Camara TN, Belinato TA, Peixoto AA, Lima JBP, et al. Assessing the Effects of Aedes aegypti kdr Mutations on Pyrethroid Resistance and Its Fitness Cost. PLoS One. 2013;8(4):e60878. https://doi.org/10.1371/journal.pone.0060878 [ Links ]

Rosato E, Kyriacou CP. Analysis of locomotor activity rhythms in Drosophila. Nat Protoc. 2006;1(2):559-68. https://doi.org/10.1038/nprot.2006.79 [ Links ]

Moore-Ede M, Sulzman FM, Fuller CA. The clocks that time us: physiology of the circadian timing system. Cambridge: Harvard University Press, 1984. https://doi.org/10.1152/ajpregu.1986.250.5.R737 [ Links ]

Lima-Camara TN, Codeço CT, Honório NA, Bruno RV, Peixoto AA, Lounibos LP. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females. Mem Inst Oswaldo Cruz. 2013;108(Suppl. 1):18-25. https://doi.org/10.1590/0074-0276130381 [ Links ]

Alexander N. Review: analysis of parasite and other skewed counts. Trop Med Int Health. 2012;17(6): 684-93. https://doi.org/10.1111/j.1365-3156.2012.02987.x [ Links ]

Taylor B, Jones MD. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L.): the phase-setting effects of light-on and light-off. J Exp Biol. 1969;51(1):59-70. [ Links ]

Braga IA, Valle D. Aedes aegypti: Insecticides, Mechanisms of Action and Resistance. Epidemiol Serv Saúde. 2007;16(4):279-93. https://doi.org/10.5123/S1679-49742007000400006 [ Links ]

Lounibos LP, Kramer LD. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus. J Infect Dis. 201615;214(Suppl 5):453-458. https://doi.org/10.1093/infdis/jiw285 [ Links ]

Wachira CM, Lawi OG, and Malinzi J. A spatiotemporal model on the transmission dynamics of Zika virus disease. Asian J Math. 2018;10(4):1-15. https://doi.org/10.9734/ARJOM/2018/43944 [ Links ]

Meirelles-Filho ACA, Kyriacou CP. Circadian rhythms in insect disease vectors. Mem Inst Oswaldo Cruz. 2013;108(Suppl. 1):48-58. https://doi.org/10.1590/0074-0276130438 [ Links ]

Ranson H, Lissenden N. Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends Parasitol. 2016;32(3):187-196. https://doi.org/10.1016/j.pt.2015.11.010 [ Links ]

Silva GL, Pereira TN, Ferla NJ, Silva OS. The impact of insecticides management linked with resistance expression in Anopheles spp. populations. Cienc Saude Colet. 2016;21(7):2179-88. https://doi.org/10.1590/1413-81232015217.00922015 [ Links ]

Githinji EK, Irungu LW, Ndegwa PN, Machani MG, Amito RO, Kemei BJ, et al. Impact of Insecticide Resistance on P. falciparum Vectors’ Biting, Feeding, and Resting Behaviour in Selected Clusters in Teso North and South Subcounties in Busia County, Western Kenya. J Parasitol Res. 2020;2020:9423682. https://doi.org/10.1155/2020/9423682 [ Links ]

Rowland M. Activity and mating competitiveness of γHCH/dieldrin resistant and susceptible male and virgin female Anopheles gambiae and An.stephensi mosquitoes, with assessment of an insecticide‐rotation strategy. Med Vet Entomol. 1991;5(2): 207-22.https://doi.org/10.1111/j.1365-2915.1991.tb00543.x [ Links ]

Sampaio VS, Rivas GBS, Kobylinski K, Pinilla YT, Pimenta PFP, Lima JBP, et al. What does not kill it makes it weaker: effects of sub-lethal concentrations of ivermectin on the locomotor activity of Anopheles aquasalis. Parasit Vectors. 2017;10(10):623. https://doi.org/10.1186/s13071-017-2563-0 [ Links ]

Publicado

2021-04-23

Edição

Seção

Artigos Originais

Como Citar

Nakazato, B. M. ., Macoris, M. de L. da G., Urbinatti, P. R., & Lima-Camara, T. N. (2021). Locomotor activity in Aedes aegypti with different insecticide resistance profiles. Revista De Saúde Pública, 55, 18. https://doi.org/10.11606/s1518-8787.2021055002809

Dados de financiamento