Nature-Based Solutions as as instrument for improve urban forestry, helping to build water-sensitive and climate resilient cities

Authors

DOI:

https://doi.org/10.11606/issn.2179-2275.labverde.2022.189209

Keywords:

Nature-based solutions (SbNs), City, Adaptation, Mitigation, Permeable pavement, Urban trees

Abstract

Given the context of climate change, it becomes increasingly imperative to adopt strategies for building resilient landscapes, which are able to respond to extreme weather events, such as heavy rains and prolonged drought periods, which can already be observed and according to forecasts will be even more critical in the coming decades. The concept of water-sensitive cities establishes the principles for the construction of a healthy urban environment, where ecosystem services are included, to the territory and its community. Urban afforestation is essential in this process, as it acts in the maintenance of various regulation, provision, cultural and support processes. Despite its importance, urban afforestation finds in large cities a highly adverse environment for its development, especially with regarding water availability, nutrients and space for its adequate growth, and the fall of urban trees during intense rains is responsible for damage to property and people. Pivoting, ie, the fall with the uplift of the entire root system, is caused by the inadequate development of the root system, which in urban areas is mainly due to soil compaction of public sidewalks or sidewalks; the poor distribution of moisture throughout the volume of soil below the pavement also contributes to limiting the development of roots, in addition to this, we often have the inappropriate choice of species that does not observe the characteristics of the place. The bed areas, responsible for capturing rainwater, are not enough to collect a volume of water that allows an adequate environment for the development of the root system and the tree as a whole. Permeable pavements, which allow water to infiltrate the soil and store part of the rainwater, can enhance a favorable habitat for plant development. In this study, the hydrological processes on sidewalks with different configurations were simulated in order to verify the effect of the implementation of permeable paving on water availability as an instrument for the maintenance of urban afforestation. The results obtained demonstrate the potential of using these systems to increase the water availability in the soil for the maintenance of urban afforestation.

Downloads

Download data is not yet available.

References

_________. Projeto da Prodam/SMSP mapeia árvores do sistema viário de São Paulo. São Paulo: Portal da Prefeitura do Município de São Paulo, 2014. Disponível em: https://www.prefeitura.sp.gov.br/cidade/secretarias/inovacao/prodam/noticias/index.php?p=183756. Acesso em: 04 ago. 2021.

_____. Vendaval desta semana é responsável por mais de 20% das quedas de árvore de 2014. São Paulo: Portal da Prefeitura do Município de São Paulo, 2014. Disponível em: <http://www.capital.sp.gov.br/portal/noticias/5194> Acesso em: 20/04/2016.

Andrés-Valeri, V. C., Marchioni, M., Sañudo-Fontaneda, L. A., Giustozzi, F., & Becciu, G. Laboratory assessment of the infiltration capacity reduction in clogged porous mixture surfaces. Sustainability, 8(8), 751, 2016.

Barone, P. M.; Ferreira, C. A posteriori GPR Evaluation of Tree Stability A Case Study in Rome (Italy). Remote Sensing, v. 11, p. 1–17, 2019

Becciu, G., & Paoletti, A. Fondamenti di costruzioni idrauliche. Wolters Kluwer Italia, 2010.

Berland, A., Shiflett, S. A., Shuster, W. D., Garmestani, A. S., Goddard, H. C., Herrmann, D. L., & Hopton, M. E. The role of trees in urban stormwater management. Landscape and urban planning, 162, 167-177, 2017.

Brugin, M., Marchioni, M., Becciu, G., Giustozzi, F., Toraldo, E., & Andrés-Valeri, V. C. Clogging potential evaluation of porous mixture surfaces used in permeable pavement systems. European Journal of Environmental and Civil Engineering, 24(5), 620-630, 2020.

Buckeridge, M. Árvores urbanas em São Paulo: planejamento, economia e água. São Paulo: Estudos Avançados 29 (84), 2015.

Camargo A. P., Sentelhas P. C. Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, Santa Maria, v.5. n.1. p 89-87, 1997.

CCST, Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais (INPE) e do Instituto Astronômico, Geofísico e de Ciências Atmosféricas da Universidade de São Paulo (USP) - Relatório sobre mudanças climáticas no Brasi., 2019. Disponível em: < http://www.ccst.inpe.br/producao-cientifica-do-ccst/> acessado em 23/09/2021.

Craul, P. J. Urban soils: an overview and their future. In: Watson, G.W.; Neely, D. The landscape below ground. Illinois: Morton Arboretum/International Society of Arboriculture. P. 115-125, 1993.

Departamento de Águas e Energia Elétrica (DAEE). Precipitações intensas no estado de São Paulo. 2018.

Fini, A., Frangi, P., Mori, J., Donzelli, D., & Ferrini, F. Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements. Environmental Research, 156, 443-454, 2017.

Frota, A. B. Controles térmicos naturais e qualidade ambiental. In: Seminário Internacional de Conforto Ambiental – NUTAU. 1996.

Gironás, J., Roesner, L. A., Rossman, L. A., & Davis, J. A new applications manual for the Storm Water Management Model(SWMM). Environmental Modelling & Software, 25(6), 813-814, 2010.

Göbel, P., Starke, P., Voss, A., & Coldewey, W. (2013). Field measurements of evapotranspiration rates on seven pervious concrete pavement systems. NOVATECH, 2013.

Gorzelak, M. A.; Asay, A. K.; Pickles, B. J.; Simard, S. W. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB PLANTS 7: plv050; doi:10.1093/aobpla/plv050, 2015.

Horton, R. E. An approach toward a physical interpretation of infiltration‐capacity. Soil science society of America journal, 5(C), 399-417, 1941.

Ishimatsu, K., Ito, K., Mitani, Y., Tanaka, Y., Sugahara, T., & Naka, Y. Use of rain gardens for stormwater management in urban design and planning. Landscape and Ecological Engineering, v. 13, n. 1, p. 205-212, 2017.

Konijnendijk, C. C., Ricard, R. M., Kenney, A., & Randrup, T. B. Defining urban forestry–A comparative perspective of North America and Europe. Urban forestry & urban greening, 4(3-4), 93-103, 2006.

Kottegoda, N. T., & Rosso, R. Applied statistics for civil and environmental engineers (p. 718). Malden, MA: Blackwell, 2008.

Livesley, S. J., McPherson, E. G., & Calfapietra, C. The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of environmental quality, 45(1), 119-124, 2016.

Magalhães, L. M. S. Arborização e florestas urbanas – terminologia adotada para a cobertura arbórea das cidades brasileiras. In: Floresta e Ambiente, p. 23-26, Jan/2006.

Marchioni, M., & Becciu, G. Experimental results on permeable pavements in urban areas: A synthetic review. International Journal of Sustainable Development and Planning, 10(6), 806-817, 2015.

Mattheck, C.; Breloer, R.C. The body language of trees: a handbook for failure analysis. London: the Stationery Office, 1997. 239 p.

Morgenroth, J., & Visser, R. Aboveground growth response of Platanus orientalis to porous pavements. Arboriculture and Urban Forestry, 37(1), 2011.

Mullaney, J., Lucke, T., & Trueman, S. J. The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees. Urban Forestry & Urban Greening, 14(1), 19-29, 2015.

Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environmental pollution, 193, 119-129, 2014.

Oliva, G. T. Relação do conforto humano com métricas de cobertura arbórea. Dissertação (Mestrado). Piracicaba: USP/ESALQ, 2016.

Rosa, A. S.; Waetge, A. A.N.; Barbosa, E. S.; Biazzo, F. C. M.; Kavamura, H. E. Diagnóstico das árvores caídas nos distritos da Subprefeitura Sé: análise de dados do período de 2016 A 2018. Trabalho de Conclusão de Curso, Especialização. Diadema: Universidade Federal de São Paulo, 2019. 42 p.

Rossman, Lewis A., and Wayne C. Huber. “Storm water management model reference manual volume I–Hydrology.” National Risk Management Laboratory, 2015.

Ruangpan, L., Vojinovic, Z., Sabatino, S. D., Leo, L. S., Capobianco, V., Oen, A. M., ... & Lopez-Gunn, E. Nature-based solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Natural Hazards and Earth System Sciences, 20(1), 243-270, 2020.

São Paulo (Cidade).. Manual Técnico de Arborização Urbana. Secretaria Municipal do Verde e do Meio Ambiente. PMSP. 2015.

Schardong, A; Srivastav, R. K. - Atualização da equação intensidade-duração-frequência para a cidade de são paulo sob efeito de mudanças climáticas. RBRH – Revista Brasileira de Recursos Hídricos, Volume 19 n.4 –Out/Dez 2014,176-185.

Silveira, A. D., & Goldenfum, J. A. Metodologia generalizada para pré-dimensionamento de dispositivos de controle pluvial na fonte. Revista Brasileira de Recursos Hídricos, 12(2), 157-168, 2007.

Soil mechanics in engineering practice / Karl Terzaghi, Ralph B. Peck, Gholamreza Mesri. Terzaghi, Karl (1883-1963); Mesri, Gholamreza (1940-); Peck, Ralph Brazelton 3. ed. New York [etc.] : Wiley, 1996

Swan, D. J., & Smith, D. R. Development of the permeable design pro permeable interlocking concrete pavement design system. In 9th International Conference on Concrete Block Paving, Argentina (pp. 18-21), 2009.

Tangune, B. F., & Escobedo, J. F. (2018). Reference evapotranspiration in So Paulo State: Empirical methods and machine learning techniques. International Journal of Water Resources and Environmental Engineering, 10(4), 33-44, 2018.

Volder, A., Watson, T., & Viswanathan, B. (2009). Potential use of pervious concrete for maintaining existing mature trees during and after urban development. Urban Forestry & Urban Greening, 8(4), 249-256, 2009.

Wang, J., Meng, Q., Zhang, L., Zhang, Y., He, B. J., Zheng, S., & Santamouris, M. Impacts of the water absorption capability on the evaporative cooling effect of pervious paving materials. Building and Environment, v. 151, p. 187-197, 2019.

Woods-Ballard, B., Kellagher, R., Martin, P., Jefferies, C., Bray, R., & Shaffer, P. The SUDS manual (Vol. 697). London: Ciria, 2007.

Published

2022-11-21

How to Cite

Nature-Based Solutions as as instrument for improve urban forestry, helping to build water-sensitive and climate resilient cities. (2022). Revista LABVERDE, 12(1), 12-44. https://doi.org/10.11606/issn.2179-2275.labverde.2022.189209