On the Sum of All N-commutators in a Finite Group¹

Kurt Meyberg

Abstract: In the theory of nonassociative algebras - like Lie algebras, alternative algebras, Jordan algebras - the Casimir operator is a useful tool in proving some important theorems. In my lecture I will discuss the Casimir operator in finite group algebras to give simple and elegant proofs of some known and unknown basic facts from group theory.

Key words: Finite group, Casimir element, character degree, commutator subgroup.

1 Background and notations

1.1

Let G be a finite group, ρ_1, \ldots, ρ_r all irreducible representations of G with characters $\chi_i(g) = \operatorname{trace} \rho_i(g)$ and degrees $n_i = \chi_i(e)$. Let $\mathbb{C}G$ be the group algebra over the complex numbers and $Z(\mathbb{C}G)$ its center.

Then $r = \dim Z(\mathbb{C}G)$ = number of conjugacy classes of G. The class sums C_1, \ldots, C_r form a basis of $Z(\mathbb{C}G)$, so do the central idempotents

(1)
$$e_i = \frac{n_i}{|G|} \sum_g \chi_i(g^{-1})g, \qquad e_i e_j = \delta_{ij} e_i \quad (1 \le i, j \le r)$$

1.2 Integrality

An element x in a unital ring R is called integral, if there exists a $k \in \mathbb{N}$ and integers a_i such that $x^k + a_{k-1}x^{k-1} + \cdots + a_1x + a_0e = 0$. Each $x = \sum_g \xi_g g \in \mathbb{C}G$ with integral coefficients $\xi_g \in \mathbb{Z}$ is integral. Thus, if we have a central element $\sum_g m_g g = \sum_i \alpha_i e_i$ with integral coefficients, then all α_i are algebraic integers, and therefore integers if $\alpha_i \in \mathbb{Q}$.

1.3 Casimir elements

Let A be a finite dimensional F-Algebra (F a field) with non degenerate, symmetric and associative bilinear form φ , and let

 $(u_1,\ldots,u_n),(v_1,\ldots,v_n)$ be a pair of φ -dual bases, $\varphi(u_i,v_i)=\delta_{ij}$, then

$$(2) c := \sum_{i=1}^{n} u_i v_i$$

¹Short version of a talk given at the IX Encontro em Algebra USP-UNICAMP-UNESP, sept.2001. The author thanks the IME-USP, in particular I. Shetakov, for their kind hospitality and FAPESP for support (Proc. 2001/02074-4).

is called a Casimir element of A. It is independent of the bases.

2 The Casimir element in $Z(\mathbb{C}G)$, G a finite group.

2.1

The bilinear form $\varphi(x, y) = \frac{1}{|G|} \sum_{g} \xi_g \eta_{g^{-1}}$ remains non degenerate when restricted to the center $Z(\mathbb{C}G)$. There we have 2 distinguished pairs of dual bases

$$(C_1, \dots, C_r), \qquad \begin{pmatrix} |\underline{G}| \\ h_1 C'_1, \dots, |\underline{G}| \\ h_r C'_r \end{pmatrix}$$
$$(e_1, \dots, e_r), \qquad \begin{pmatrix} (\underline{|G|} \\ n_1 \end{pmatrix}^2 e_1, \dots, (\underline{|G|} \\ n_r \end{pmatrix}^2 e_r \end{pmatrix}$$

Then, using (2) we get two different representations of the Casimir element which may already be used to prove a theorem of Zassenhaus on character degrees. But there is another amazing representation of c:

2.2 The main formula

Let X_g denote the set of all pairs $(a, b) \in G \times G$ such that $g = aba^{-1}b^{-1}$ and $f(g) = |X_g|$ its cardinality. Then

(3)
$$c = \sum_{i} \left(\frac{|G|}{n_i}\right)^2 e_i = \sum_{a,b \in G} aba^{-1}b^{-1} = \sum_{g} f(g)g.$$

Proof: We start with the decomposition of class sums as linear combination of the e_i

$$\sum_{a\in G} aba^{-1} = \sum_{i} \frac{|G|}{n_i} \chi_i(b) e_i,$$

multiply (from the right) by b^{-1} , sum over all b and use (1) to get the desired result.

3 Applications

3.1 A generalization of a formula of Frobenius

Let $f_k(g)$ denote the number of 2k-Tuples $(a_1, b_1, \ldots, a_k, b_k)$ such that $g = a_1b_1a_1^{-1}b_1^{-1}\ldots a_kb_ka_k^{-1}b_k^{-1}$, then

(4)
$$f_k(g) = \sum_i \left(\frac{|G|}{n_i}\right)^{2k-1} \chi_i(g)$$

108

Proof: Using (3) we compute c^k in 2 different ways

$$c_k = \sum_i \left(\frac{|G|}{n_i}\right)^{2k} e_i = \left(\sum_{a,b\in G} aba^{-1}b^{-1}\right)^k = \sum_g f_k(g)g;$$

replace e_i by its definition (1) and compare coefficients. (Frobenius formula is for k-1.)

3.2 Elegant new proof

Elegant new proof of a basic theorem:

 $n_i | [G:Z]$ (Z center of G).

Proof: $Z \times Z$ operates by leftmultiplication on X_g (see (2.2)): $(u, v) \cdot (a, b) = (ua, vb) \in X_g$ for $u, v \in Z, (a, b) \in X_g$. All orbits have equal length $|Z|^2$, thus $|Z|^2 |f(g)$. We then get from (3)

$$\sum_{g} \frac{f(g)}{|Z|^2} g = \sum_{i} \left(\frac{[G:Z]}{n_i} \right)^2 e_i,$$

thus $\frac{[G:Z]}{n_i} \in \mathbb{Z}$, by (1.2)

3.3 A new result on G'

Theorem 1 Any element from the commutator subgroup G' may be written as product of at most s-1 commutators, where s is the number of different character degrees.

Proof: Using (3) - first equation - we find a relation $c^s = b_{s-1}c^{s-1} + \cdots + b_1c + b_0e$ with integral coefficients. And now - using the other representation of c in (3) - we see, that on the left hand side (in c^s) all products of s commutators occur, but each of them (right hand side) is already a product of $\leq s-1$ commutators.

3.4 n-commutators.

The commutator subgroup G', by definition generated by all commutators, is the set of all *n*-commutators $a_1a_2 \ldots a_na_1^{-1}a_2^{-1} \ldots a_n^{-1}$, $n \ge 1$. The answer (which was not known before) to the following problems

Kurt Meyberg

- 1. determine the number $h_k(g)$ of n-tupels (a_1, \ldots, a_n) such that $g = a_1 \ldots a_n a_1^{-1} a_2^{-1} \ldots a_n^{-1}$,
- 2. determine a lower bound for n,

will be given with the help of the following formula:

(5)
$$\sum_{a_1,\dots,a_n \in G} a_1 \dots a_n a_1^{-1} a_2^{-1} \dots a_n^{-1} = \begin{cases} c^k, & \text{if } n = 2k \\ |G|c^k, & \text{if } n = 2k+1 \end{cases}$$

The short proof (by induction) uses $\sum_{a,b} abga^{-1}b^{-1} = gc$. By the same method as used in (3.1) and (3.3) we easily derive from (5)

- a) $h_{2k}(g) = f_k(g), \qquad h_{2k+1}(g) = |G|f_k(g)$
- b) Each $g \in G'$ is a 2k-commutator, $1 \le k \le s 1$.

3.5 Further results

M.Leitz used the Casimir element for an elementary proof of Reynold's Theorem:

$$\frac{|H|}{\theta(e)} |\frac{|G|}{\chi(e)}|$$

where $H \leq G$, χ irreducible and θ an irreducible constituent of χ_H . Tambour and Leitz gave (independent and different) proofs of Itô's theorem:

 $n_i | [G:A]$

for abelian normal subgroups. Both (still elaborate) proofs use the sum of all commutators and/or the sum of all n-commutators.

A "nice" factorization $c_G = c_H \cdot w$ of the Casimir element c_G (resp. c_H for $H \leq G$) and w integral - which is not yet known - would simplify matters considerably.

References

- Frobenius, G., Gesammelte Abhandlungen, vol. 3, Springer Verlag, Heidelberg (1968)
- [2] Kellersch, P., Spurformeln in Gruppenalgebren, Diplomarbeit, TU München (1993)
- [3] Kellersch, P., Meyberg, K., On a Casimir element of a finite group. Comm. Algebra 25, pp. 1695-1702 (1997)

- [4] Meyberg, K., The sum of all n-commutators in a finite group, To appear in Comm. Algebra
- [5] Meyberg, K., On a formula of Frobenius, Seminarberichte FU Hagen, vol.68 (2000)
- [6] Leitz, M., Kommutatoren und Itô's Satz über Charaktergrade. Ach. Math. 67, pp. 275 - 280 (1996)
- [7] Leitz, M., Casimir Operator und ein Satz von Reynolds über Charaktergrade. Ach. Math. 71, pp. 358 - 367 (1998)
- [8] Tambour, T., The number of solutions of some equations in finite groups and a new proof of Itô's theorem. Comm. Algebra 28, pp. 5353 - 5361 (2000)

Kurt Meyberg

Zentrum Mathematik der Technischen Universität München and Instituto de Matemática e Estatística da Universidade de São Paulo meyberg@ma.tum.de Germany 111