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Recent Results on Finite and Infinite
Systems of Interacting Diffusions!
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Abstract: We review some recent results concerning the
long time behavior of finite and infinite systems of interacting
diffusions. After presenting the basic ergodic theory of the
infinite systems, we observe that the long time behavior of
the finite systems differs drastically from that of the infinite
system, at least from a naive point of view. A theorem com-
paring the finite and infinite systems on different time scales
is presented which gives a more complete picture of what is
going on.
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Introduction

The purpose of this note is to review recent work from [CG3], [S4], and [CGS]
on the long time behavior of finite and infinite systems of interacting diffusions.
These are Markov processes z(t) = {zi(t),i € A} € I*, where I C IR is an
interval, and A C Z* (the d-dimensional integer lattice). They are defined via
stochastic differential equations:

dei(t) =[ ) a(i, 4)zj(t) — zi(t)] dt + /g(zi(8)) dwi(t), i€A,
(1) JEA

z(0) € I*.

The ingredients in the above system are:
e A matrix a(7, j) on A x A such that

(2a) a(i,j) >0, D a(i,j)=1 Vi€A.
JEA
e A function g : I — [0, 00) such that

(2b) g is locally Lipschitz and vanishes at finite endpoints of I.

e A collection {w;(),i € A} of independent Brownian motions on IR.

We will call (1) an infinite system if the index set A is infinite, and a finite system
otherwise. We are particularly interested in comparison theorems relating the long
time behavior of infinite systems and large finite systems.
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The first term in (1) describes how the coordinates z;(t) interact, while the
second term is a kind of self fluctuation term. The interaction term is linear in
the coordinates, and in the absence of the fluctuation term (set g = 0), it is easy
to see that (1) has solution

zi(t) = Y au(i, j)z;(0),

JEA

where a;(i,7) = e™' Y ono o t" a'”)(i, j)/n!, t > 0. Thus the interaction term causes
averaging of the coordinates, and in fact drives the coordinates to total consensus.
On the other hand, if the interaction term is not present (set a(7,j) =1ifi = j,
and 0 otherwise), then the coordinates z;(t) are simply independent martingales.
In this case the coordinates just fluctuate independently of one another, there is no
tendency to agreement. When both terms are present there is a tension between
these two opposing forces.
Some well known examples of interacting diffusions are:

Example 1. [ =[0,1], g(f) = cf(1 —0), c a constant. This is the Wright-Fisher
stepping stone model of mathematical genetics, and is the subject of a beautiful
series of papers by T. Shiga and his co-workers (see [S1-S3], [NS],[SU]). The model
is mathematically tractable because of the existence of a nice “dual” process.

Example 2. [ = [0,), g(0) = ¢f, ¢ a constant. This is a branching diffusion
model, or “superprocess” over a Markov chain on A with transition matrix a(i, j)
(see [D]). The model is tractable because branching techniques can be brought to
bear.

For simplicity, and because results are most complete in this case, we will
assume from now on that

(3) I'=10,1], g(0) =g(1) =0, g >0on (0,1).
Remark. For unbounded unbounded I, growth conditions on g(#) must be im-
posed (see [S4] and [CGS]).
The Infinite Systems z(t)
Let A = Z?, and assume in addition to (2a) that a(i, ) is irreducible, and that
(4) a(i,j)=a(0,j—i) Vi,je€z".

It follows from results of [SS] that for every z(0) € = (endowed with the product
topology) there exists a unique strong solution z(¢) of (1) such that z(t) is a
continuous, strong Markov process, with Feller semigroup S(¢) and generator &
acting on C? functions which depend on finitely many coordinates according to
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[t turns out that the limiting behavior of z(f) as  — > is very strongly
influenced by the symmetrized matrix

— a(i, j) + alj. i)
a(i.j) = DA T LR
2

In order to state precise results some additional notation is needed. Let T denote
the collection of probability measures on IZ" wlich are translation invariant, and
let T denote the set ol probability measures on IZ* which are invariant for x(t),
i.e., all yesuch that pS(t) = pfor all £ > 0. We use L for law, 84 for the unit point
mass al the element x; = 0, and 'y for the set of extreme points of a convex
set I, = will denote weak convergence. In particular, if g, gy, o, ... are proba-
bility measures on 1Z*, then Jtn = jt as n — o< means that for every bounded
continuous function f on I%Z* which depends on only finitely many coordinates,
i f(e) — E# f(2).

If the matrix @(i, j) is recurrent, then the interaction or averaging effect in (1)
wins out, and the coordinates x;(f) tend to consensus in the limit ¢ — oo, On the
other hand, il a(z, j) is transient, then the fluctuation term in (1) is dominant,
and differences in the coordinates persist. More precisely, we have

Theorem 1.
(a) Assume a(7, 7) is recurrent. Then for all initial states x(0), z(t) clusters as
{ — 0. That is,

() zi(t) - zj(t) =>0asl — o Vi,je Z%
Furthermore, if L(x(0)) € T, and Fao(0) = 4. then
() C(x(t)) = (1 —0)0 + 081 as | — x

() Assume a(i, j) is transient. Then lor all # € I, with £(2(0)) = 8g, the weak
it vy = limy—~. L(x(1)) exists. More generally, if £(x(0)) € T is shift-ergodic,
with [ag(0) = 0. then
(7) L{x(l)) = vy as | — .

The measures vy are Lranslation invariant, shift-ergodic, and
(§) Lt = {wp.0 € I}.

Theorem | was first proved in [S1-S2] for the Wright-Fisher stepping stone
case ¢(0) = e0(1 — 0) using duality techniques. Part (a) of Theorem 1 was proved
for general g(0) in [NS] (under some mild restrictions) and in [CG3]. Part (b)
was obtained for general ¢(0) in [CG3], except for the weaker version of (8),

(ZNT), »t = {we,0€ 1}. The full strength of (8) has only recently been obtained
by Shiga (see [S5]). The duality method used to attack the Wright-Fisher stepping
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stone case does not handle general the case of general ¢(@): however, a beautiful
coupling method invented by Liggett and Spitzer (see [LS]) can be used (see [CG 3],
[S4]). .

The Finite Systems x™ (¢)

For N = 1,2,..., let Ax = (-N,N}¥n Z® be viewed as a torus, and let
aV(i,j) = Zkezd a(i,j+2Nk), i,j € Ay. The finite systems 2™V (t) = {«N(1).i €
Ay} are defined via the system

dzMN(t) =[ D aVG, i)} () — 2N (O)]dt +\[g(z} (1) dwi(t), i€ Ay,

(9) JEAN
zN(0) € IMV,

Observe that each & (1) is really a finite-dimensional diffusion. Furthermore, the
zN(.) are finite versions of z(-) in the sense that for fixed t,

(10) L(zN (1)) = L(x(1)) as N — x.

Remark. Let us make clear the meaning of the convergence in (10). For 2 € Ayx
let 7 @ IAN — IZ° be the periodic extension operator (wya® )= N where
i € Ay, 7 = j mod (2N). Also, let 7n denote the induced operator mapping
probability measures on I*¥ to probability measures on 171 uV is a probability
measure on [A¥ N = 1,2,..., and g is a probability measure on I%" | then
uN = pas N — oo means iypu™ = pas N — oc. That is, the convergence in
(10) refers to convergence on finite windows of Z9.

The long time behavior of the finite systems, at least from a naive point ol
view, is rather simple. If, for instance, &N (0) = 0 say, then for fixed N,

PIEAQ)
i€EA N

is a nonnegative martingale, and must converge a.s. as [ — oo. ;From this fact it
is easy to see that for fixed N,

(11) L(zN(t)) = (1 - 0)60 + 081 as t — oo,

no matter whether a(i, j) is transient or recurrent. Compare this with Theorem
1, especially (7). This brings up the natural

Question. What relationship exists between the vy of Theorem 1(b) and the
large finite systems =™ ()7

To answer this question we must allow N and ¢ to tend to infinity together.
Presumably, if N is large and ¢ is large but not too large, then one expects
L(zN(t)) =~ L(z(t)) =~ vg. But how large is “not too large?”
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The Finite Systems Scheme

We will adopt the finite systems scheme of [CG1], and define the following
objects.
( i) The time scale By = (2N)%.
( ii) The empirical densities

oMty = ANt Y 2N ().
iEAN
( 111) The rescaled process of empirical densities

Zn(t) = ON(toN).

( iv) The diffusion Z(t) on I, defined for the case @(i, j) transient, by

dZ(t) = /g7 (Z(s)) dw(s), Z(0)=p.

where w(t) is a Brownian motion on IR and ¢* is the function
g"(0) = E” g(x0).

It can be shown that the function ¢*(#) is Lipschitz on I, and hence Z(1) is well
defined. The probability transition function of Z(¢) will be denoted Q(p, df).

The Comparison Theorem

In view of (6) and (11), it is not surprising that if a(7, j) is recurrent, then
the finite systems cluster no matter how N and ¢ tend to infinity. So we will
not discuss this case further, except to point out that the rate of clustering is an
interesting and subtle issue, and is partly addressed in [CGS]. The following result,
taken from [CGS], is our answer to the basic question concerning the comparison
of large finite and infinite systems.

Theorem 2. Assume a(i, j) is transient. Suppose that for N = 1,2,..., £(xN(0))
is homogeneous, and OV (0) => 0 as N — oc. If tn | oo and ty /Bn — s € [0, 00],
then

(12) ON(tn) = 2(s),  Z(0) =0,
and
(13) £ () = [ Quo.dpivy.

The convergence in (12) shows that the density process @ (-) varies smoothly on
the time scale 3n. In fact, ©V(- 3x) = Z(-) on path space. The following special
cases help interpret the convergence in (13).
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s = 0 : This is the case ty < fn. and the right-hand side of (13) reduces 1o
vg. Thus, the finite systems 2™ (1) look (locally) like the infinite system (1 ).
namely both are described by vg. This extends (10).

s = oo : 'T'his is the case ty > Ay, and the right-hand side of (13) reduces 1o
(1 = 0)éo + 061 Here we sce that on this time scale the finite systems know they
are finite systems, and cluster. I'his extends (11).

s € (0,00) : Here iy = sfy, and in this intermediate phase, very roughly
speaking, the law of the finite system .L'N(tN} is vy, where p = ON(ty). Here
we have the picture that the global density ®™(.) varies on the time scale v,
and the law of the process 2™ (-) is slaved to @V (.). As ON(.) diffuses through /.
L(z™(-)) diffuses through the invariant measures v,,.

Results of this type were proved for other interacting systems in [CG1] and
[DG1]. For instance, a version of Theorem 2 holds for the one-dimensional su-
percritical contact process. In this case we set OV (t) = ¥,c, HazMN(t) = 1},

={0,1}, vo = o, v1 = the upper invariant measure, Jy = e™ for some con
stant v, and Z(t) = the Markov chain on I which jumps at rate one from 1 to 0,
and is absorbed at (1. Sce Theorem 3 of [CG1] for details.

The processes in [CGS1] and [DGL] all enjoy special properties which make
them mathematically tractable: duality, branching independence, or mean-ficldd
independence. Theorem 2 shows that the finite systems scheme holds more genes
ally, and 1s not just an artilact ol special properties like duality and independenec.

The mapping ¢ — ¢~

Another result from [CGS] gives information about the mapping g — ¢ T'here
is only one case of Theorem 2 in which ¢* can be exactly calculated, and that is the
Wright-Fisher stepping stone case. Letting g,(0) = 0(1 — 0), explicit calculations
can be made to show that

(cgo)” = (ege) s

1 + ¢A(0,0)
where ﬁ(s‘,jj) = fom Gge(t, j) dt. Thus, up to a scaling factor, g, is a lixed poiat
of the mapping g — ¢*. Surprisingly, it can be shown that there is no other such
fixed point, highlighting the fundamental importance of this example. For (I
following result, and more, see [BCGH] and [CGS].

Theorem 3. Assume a(1, j) is transient. If g satisfies (3), and for every constant
¢ >0, (cg)* is a multiple of g, then g must be a multiple of g,.

Some remarks on proofs

There are several features of the interacting dilfusion systems which sceem “es-
sential” for the comparison theorem. They are:

(i) A good ergodic theorem for the infinite system: If j¢ has “spatial density™ 0
then puS(t) — vg as t — oc.
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(i) A very strong Feller-type property of the infinite system: If u, = p and
pS(tn) — v, then p, S(tn) = v for all {, — co.

(iii) A good comparison of finite/infinite systems, uniform over initial states, up
to times [y — oo slowly.

(iv) ©N () varies on the time scale Ay : if Iy << B, then

|ON (tAn) — ON (BN +In)| = 0.

It is easy to see why (iv) holds with By = |An| = (2N)?. ;From the definition

of ©N(-) and (9),
dON (t) = |An|™" 37 (ol (1)) duwi(t),

i€EAN

and hence ©V(t) is a martingale with increasing process

N = =2 t Nis 3
O = 1An"2 [ 3 atel (s

i€EAN

This shows that ©~(-) does not vary over time scales smaller than gy, since if
[y < BN, then

”3N+In
B0 (1n) = 0¥ty + 1) = IAn™ [ T 5 g(aN(s)) ds
tin iEAN
In]lglloo
< Nidlleo
— IHN

which tends to 0 as N — oc. Furthermore, ZV(t) = OV (¢8y) is a martingale,
with increasing process

Z3)0) = 1An1™ [ atal (s0w)) ds.
i}

1EAN

By = (2N)? is exactly the right time scale such that [Zx](t) can converge to a
nondegenerate limit (as shown in [CGS]).

Finally, we state the coupling that is the main tool of [CGS]. Given two initial
states x(0), y(0), a bivariate process (z(t),y(t)) can be constructed via

day(t) = [ D a(d, j)z;(t) — 2i(t) ] dt + \/g(zi(1)) dwy(t),

jEZd

dys(t) = [ ali,j)y; (1) — wi(t) ] dt + /a(wi (1)) duws(t).

JE€Zd
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The crucial point is that the same collection {w;(¢)} of Brownian motions is used
for both z(¢) and y(t). It is straightforward to show that if £(z(0), y(0)) is trans-
lation invariant, then %Eh:,-(t) — yi| < 0. Hence E|x;(t) — y| is decreasing in
t, and, in some cases, tends to zero as { — oo. In fact, this coupling is one of
the key tools in proving Theorem 1. It is also possible to couple the infinite and
finite systems into a bivariate process (x(t), ™ (t)), and obtain useful comparison
estimates from the coupling.
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