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Abstract: We review some recent results concerning the 

long time behavior of finite and infinit.e systems of interacting 
diffusions. After presenting the basic ergodic theory of the 
infinite systems, we observe that the long time behavior of 
the finite systems differs drastically from that of the infinite 
system, at least from a naive point of view. A theorem com­
paring the finit.e and infinite systems on different time scales 
is presented which gives a more complete picture of what is 
going on. 
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Introduction 

The purpose of this note is to review recent work from [CG3], [S4], and [CGS] 
on t.he long t.ime behavior of finite and infinite systems of interacting diffusions. 
These are Markov processes x(t) = {Xi(t), i E A} E fA, where f C JR is an 
interval, and A C 7Z d (the d- dimensional integer lattice) . They are defined via 
stochastic differential equations: 

dXi(t)=[La(i,j)xj(t)-Xi(t)]dt+Vg(Xi(t»dwi(t), iEA, 
(1) j EA 

x(O) E fA . 

The ingredients in the above system are: 
• A matrix a( i, j) on A x A such that 

(2a) a(i,j)~O, La(i,j) = 1 Vi EA. 
jEA 

• A function g : f --+ [0,00) such that 

(2b) g is locally Lipschitz and vanishes at finite endpoints of f . 

• A collection {Wi (t), i E A} of independent Brownian motions on JR. 

We will call x(t) an infinite system if the index set A is infinite, and a finite system 
otherwise. We are particularly interested in comparison theorems relating the long 
time behavior of infinite systems and large finite systems. 
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The first term in (1) describes how the coordinates Xi(t) interact., while the 
second term is a kind of self fluctuation term . The interaction term is linear in 
the coordinates, and in the absence of the fluct.uation term (set 9 == 0), it is easy 
to see that (1) has solution 

Xj(t) = L at(i,j)xj(O), 
jEA 

where at(i,j) = e- t Z=::o tn a(nl(i,j)/n!, t 2 O. Thus the interaction term causps 
averaging of the coordinates, and in fact drives the coordinates to total consensus. 

On the other hand, if the interaction term is not present (set a( i, j) = 1 if i = j, 
and 0 otherwise), then the coordinates Xj(t) are simply independent martingales. 
In this case the coordinates just fluctuate independently of one another, there is no 
tendency to agreement. When both terms are present there is a tension between 
these two opposing forces . 

Some well known examples of interacting diffusions are: 

EXaJllple 1. / = [0,1]' g(O) = cO(1- 0), c a constant. This is the Wright-Fisher 
stepping stone model of mathematical genetics, and is the subject of a beautiful 
series of papers by T. Shiga and his co-workers (see [SI- S3], [NS],[SU]) . The model 
is mathematically tractable because of the existence of a nice "dual" process. 

Example 2. / = [0,00), g(O) = cO, c a constant. This is a branching difrusioll 
model, or "superprocess" over a Markov chain on A with transition matrix a(i,j) 
(see [D]). The model is tractable because branching techniques can be brought to 
bear. 

For simplicity, and because results are most complete in this case, we will 
assume from now on that 

(3) /=[0,1]' g(O) = g(l) = 0, 9 > 0 on (0,1). 

Remark. For unbounded unbounded I , growth conditions on g(O) mllst be im­
posed (see [S4] and leGS]) . 

The Infinite Systems x(t) 

Let A = ZZd, and assume in addition to (2a) that a( i, j) is irreducible, and that 

(4) a(i,j) = a(O,j - i) Vi,j E ZZd. 

It follows from results of [SS] that for every x(O) E /Zd (endowed with the product 
topology) there exists a unique strong solution x(t) of (1) such that x{t) is a 
continuous, strong Markov process, with Feller semigroup 8(t) and generator \!5 
acting on C 2 functions which depend on finitely many coordinates according to 

\!5f(x) = ~ L g(x)~:{ + L [L a(i,j) - 6(i,j)]:: .. 
i EZ. I i EZ. iEZd ' 



It. t.UI'llS out. t.hat. t.he limiting b,' havior of x(t) as t -> ,x , is very strongly 
influenced by t.h e symmet.rized matrix 

~( .. ) aU , j) + a(j, i) 
a 1 .• j = ~ . 

In order to stat.e precise result.s some additional notatioll iH needed. Let T denote 
I.he collecLioll of probabilit.y meastlres on IX " which are t.ranslat.ion invariant., and 
kt I dellote the set. of prohability measures on JZd which an~ illval'iant for ;r(t) , 
i.t' . , all II such that. IlS(t) = 11. for all t 2: O. \Ve use C for law, be for the unit point 
llI ass a.t. t,he ekment. Xi == 0, and 1' c:o t for t.he set of extreme points of a convex 
set r. ::.:::> will dcuot.e weak convergence. In particular, if 11,,11,1, !l2, . .. are proba­
bility llIf'asures on I'lZ" , then P,. => II as n -> ex :. means that for every bounded 
continuolJs funct.ion / 011 I zd which depends on only finitely many coordinates, 
E" " f(.!:) ~ E" /(3: ). 

If t.hl' lnat.rix a( i , .f) iH recurrent. t.hen the interactioll or averaging effect in (1) 
wins out , aud t.h e coordinat.es J:,(t) tend t.o consensus in the limit. t -> CXl. On the 
otll er hand . if 'ii(i , .f) is transient , then the fluctuation t.enn ill (1) is dominant, 
and difkren cps in the coordinates persist. More precisely. we have 

TheorelH 1. 
(a) Assllme a.(i,j) is recurrent. 'I'hen for a ll initial staLl's £(0), x(t) clusters as 

I ~ 'x ' . That is , 

1'1ll'tlwl'11I0 re. if C(J>(O)) E T, nnJ Exo(O) = O. then 

(fi) C(xU)) => (l - O)bo + ObI as t -x' 

(b) Assllme Zi(i,j) is transient. Thell ["or nil 0 E £, wit.h £(J:(O)) = 8e, j,he weak 
Ii III i t //11 = lill1t---> N £( J:(t)) exists. More ge ll e rally, if C( J:( 0)) E T is shift-ergodic. 
\\' i \. Ii I ; .1' lJ ( 0) = fJ , tit e l\ 

(r) £( x (t)) => Ve as t - CXl . 

'1'11<' lli eaS lI1'CS Vy are t.ranslation invariant, sltift~ ergodic, and 

'l'llcon'fIl I was first. proved in [SI - S2] for the Wright-Fish er stepping stone 
caSt' rI(O) = cOr l - 0) uHing duality techniques. Part (a) of Theorem 1 was proved 
for general :1(0) ill [NS] (under some mild restrictions) aud in [CG~~]. Part (b) 
was oilt,aill('d for general g(O) in [CG3], except, for the weaker version of (8), 
(I n T) ,.l't = {//8, () E l}. The full strengt.h of U~) has only recently been obtained 
by Shiga (sec [S5]). TIt,~ duality met.hod used to attack the Wright-Fisher stepping 
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stone case does not handle general t.he rase of general !i(O) ; howewr, a b('autiful 
coupling method invented by Liggett. and Spit.zer (see [LS)) can he used (st'e [CG3]. 
[S4]). 

The Finite Systems :E N (t) 

For N = 1, 2, ... , let AN = (-N, N]d n ;,zd bp viewed as a torus, and let. 
aN(i,j) = LkEZ'd a(i,j+2Nk), i , j E AN. The finite systems xN(t) = {x ;Y(t) . i E 
AN} are defined via the system 

(9) 

Observe that each x N (t) is really a finite-dim ensional diffusion . Furthermore, the 
x N (-) are finite versions of xC) in the sense that for fixed t, 

(10) £(xN (i)) => £(x(t)) as N ~ 00. 

Remark. Let us make clear the meaning of the convergence in (10). For x N E A/\ 

let 7rN : IA N ~ (£d be the periodic extension operator {7rN XN )j = .r;V wlwrc 
i E AN , i = j mod (2N) . Also, let 7rN denote the induced operator mapping 

probability measures on IA N to probability measures on I:£ d. If JiN is a probabilit.y 
measure on IA N, N = 1, 2, . .. , and It is a prohability measure on I:£", t.hen 
ItN => II as N ~ 00 means 7rNIlN => Ji. as N ~ 00. That is , the convergellce ill 
(10) refers to convergence on finite windows of ;,zd. 

The long time behavior of the finite syst.ems, at least from a naive point. of 
view, is rather simple. If. for instance, J:;V (8) == 8 say. then for fixed N. 

L x;V (1) 
iEAN 

is a nonnegative martingale, and must converge a.s. as i ~ 00 . .i.From this fact. it. 
is easy to see that for fixed N, 

(11 ) 

no matter whether Ci.( i, j) is transient. or recurrent. Compare this with Theorem 
1, especially (7). This brings up the nat.ural 

Question. What relationship exists between the Ve of Theorem I(b) and the 
large finite systems x N (t)'? 

To answer this question we must allow Nand t to tend to infinity together . 
Presumably, if N is large and t is large but not too large, then one expects 
£(xN(t)) ~ £(x(t)) ~ Ve · But how large is "not too large'?" 



Rece nt results on fillit e ann infinit.t' systems of interacting diffusions 17i 

The Finite Systems Scheme 

We will adopt the finite systems scheme of [eGl], and define the following 
objects. 
( i) The time scale (3N = (2N)d. 
( ii) The empirical densities 

eN(t) = IANr l L x{"(t). 
iEAN 

iii) The rescaled process of empirical densitil's 

iv) The diffusion 2(t) on J, defined for the case a(i,j) transient, by 

dZ(t) = Jg*(Z(s)) dw(s), Z(O) = p. 

where w(t) is a Brownian motion on IR and g* is the function 

g*(B) = E V8 g(xo) . 

It can be shown t.hat the function g*(O) is Lipschitz on J, and hence Z(t) is well 
defined. The probability t.ransit.ion function of Z(t) will be denoted Qt{p, dO). 

The Corn parison Theorem 

In view of (6) and (11), it. is not surprising t.hat if a(i,j) is recurrent, then 
the finite systems cluster no mat.ter how Nand t tl'nd to infinity. So we will 
not discuss t.his ca.'le furt.her , except to point out t.hat the rate of clustering is an 
interesting and subtle issue, and is part.ly addressed in [CGS] . The following result, 
t.aken from [CGS], is our answer t.o t.he basic question concerning the comparison 
of large finite and infinitl' syst.ems. 

Theorem 2. Assume a(i, j) is t.ransient. Suppose t.hat. for N = 1,2, . . . , £(xN (0» 
is homogeneous, and eN(O) => 0 as N -> 00. lftN 100 and tN/i3N --+ s E [0,00]' 
then 

(12) eN (iN) => Z(s), Z(O) = 0, 

and 

(13) 

The convergence in (12) shows thai. the densit.y process eN (.) varies smoot.hly on 
the t.ime scale (iN. In fact, eN (- i3N) => Z(·) on path space. T he following special 
cases help interpret the convergence ill (13). 



178 .J .T .Cox 

s = 0 : This is the case tN « /J.,v, alld t.he right.-halld sidl' of (1:1) n:dll(,"s I u 

110. Thus, the finite systems XN(tN) look (locally) like the illfillite Systt'11l J·(/ ;\). 

namely both are described by 110. This extends (IU). 
S = 00: This is the case tN »;3N, and tlw right-hand side of (13) rcdll c('s t.u 

(I - 0)60 + 001 Here we see that on this tirne scale the fillit( ! syst.ems kilO\\, t,IJ('Y 
are finite systems, and cluster. This extends (1 J) . 

s E (0,00) : Here tN ~ S;3N, and in this intermediatt' pha.se, very rougl".\ 
speaking, the law of the finite system x N (iN) is lip, where p = eN (iN). Ikr. , 
we have the picture that the global density c::-)N (.) varies 011 the tirne scale ii " . 
and the law of the process x N (-) is slaved to eN (-). As (~N ( . ) diffuses through I . 
£( x N (.) diffuses through the invariant measures lip. 

Results of this type were proved for other interacting systems in [CG I] i liid 

[DG 1) . For instance, a version of Theorem 2 holds for the one-dimensional SlI­

percritical contact process. In this case we set eN(t) = LiEAN l{x["(t) = II , 
1= {O, I}, 110 = 60 , 111 = the upper illvariallt measure , fJ.1V ~ e-yN for SOII1<' CU ll' 
stant , ', alld Z (t) = the Markov chaill 011 I which jUlllps at rate oll e frolll I Lu (l. 

alld is absorbed at O. Sec Th eon' ln :1 of [CG I) for details. 
Th e ()J'OC('SSCS ill [e GSI) alld [DC; I] all ('lIjoy slH'cial propcrtics which IIl id,., 

them lIIilthelllitti cally t,ract.ahl(,,: dllalit.y , brall chillg illdc p"II<i('IICe, or 11J('i1II .. ji. ·l, I 
illdcpclldence. Thcorelll :2 shows t.hat. til!' (illit.e sYSt.ClllS ScllClllC ho lds I II O J'( ' g( ' II" 1 
ally, and is lIoi just an artifac t. o f speci a l properties like <illillit)' illid ilid epelld( 'II (, ('. 

The llIapping y ~ yO 

Anoth er result from [CGS) gives information about the lIIapping y ~ yO . 'J'lwr( 
is only one case of Theorem 2 in which yO can be exactly calculated, and that is t.h e 
Wright-Fisher stepping stone ca.se. Letting !Jo(O) = O( 1- 0) , explicit calculali (JlI :-< 
can be made to show that 

I 
(cY or = . ~ (C!Jo) , 

1 + cA(O , 0) 

where A(i,jj) = fo=Ci 21 (i,j)dt . Thus, up to a scaling factor, Yo is a fixe(/ ! M III 

of the mapping g -> g*. Surprisingly, it can be shown that there is no ot.her Sll ch 
fixed point, highlighting the fundamental importance of this example. For til , 
following result, and more, see [BCGII) and [CGS). 
Theorem 3. Assume Ci(i, j) is transient. If y satisfies (3), and for every ('onstalll 
c> 0, (cy)* is a multiple of g, thcn !J IIlust hc it nJultiple of !/" . 

SOlne rellHtrks 011 proofs 

'There are several features or tlw illteractillg dili'lisioll ,,;),st(, III"; whi ch S' ~ ( ' III ""­
se ntial" for the compa.rison t.heo rerll . They are: 

(i) A good ergodic theorem for the infinite SystcllI: If It has "spatial dellsit.y ·' () 
then IIS( t) --> 118 as t --> 00. 
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(ii) A very strong Feller-type property of the infinite system: If J1-n :::} J1- and 
J1-S(tn) --> v, then J1-nS(tn) :::} v for all tn --> CX). 

(iii) A good comparison of finite/infinite systems, uniform over initial states , up 
to times IN --> CX) slowly. 

(iv) eNU varies on the time scale fiN: if IN «fiN, then 

It is easy to see why (iv) holds with fiN = IANI = (2N)d. l,From the definition 
ofeN (-) and (9), 

deN(t) = IANr 1 L: Vg(xf(t))dw;(t), 
iEAN 

and hence eN (t) is a martingale with increasing process 

[eN](t) = IAN 1- 2 t L: g(x[" (8)) ds. 
io ;EAN 

This shows that eN (-) does not vary over time scales smaller than f3N, since if 
IN <z: fiN, then 

which tends to 0 as N --> CX). Furthermore, ZN (t) = eN (tfiN) is a martingale, 
with increasing process 

[ZN)(t) = IANI- 1 t L g(x["(sf3N))ds . 
.Jo ;EAN 

fiN = (2N)d is exactly the right time scale such that [ZN](t) can converge to a 
non degenerate limit (as shown in leGS)) . 

Finally, we state the coupling that is the main tool of leGs] . Given two initial 
states x(O), YeO), a bivariate process (x(t), yet)) can be constructed via 

dx;(t) = [L a(i, j)Xj(t) - x;(t)] dt + Jg(x;(t)) dWi(t), 
jEZd 

dy;(t) = [L aU, j)Yj (t) - y;(t)] dt + J g(Yi et)) dw;(t). 
jEZd 
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The crucial point is that the ·same collection {Wi(t)} of Brownian motions is used 
for both x(t) and yet) . It is straightforward to show that if £(x(O) , yeO)) is trans­
lation invariant , then 1tElxi(t) - yd ::; O. Hence E lxi (t) - Yil is decreasing in 
t , and , in some cases , tends to zero as t ---.. 00. In fact , this coupling is one of 
the key tools in proving Theorem 1. It is also possible to couple the infinite and 
finite systems into a bivariate process ( J.~ (t) , x N (t)) , and obtain useful comparison 
estimates from the coupling. 
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