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INTRODUCTION
Plastic is a pervasive pollutant that has 

reached some of the most remote ecosystems 
on Earth such as the deep ocean (Woodall et al., 
2014, Chiba et al., 2018, Canals et al., 2021). 
Once they enter the ocean, bulk plastics start 
degrading by different weathering processes, 

such as UV radiation, mechanical abrasion, 
hydrolysis, and biodegradation (Alimi et al., 
2018, Bond et al., 2018, Chamas et al., 2020). 
The degradation processes make the plastic 
items brittle, which fragment into microplastics 
and nanoplastics (Ter Halle et al., 2016, Lambert 
and Wagner, 2016, Gigault et al., 2021). Due to 
their small size and increased surface area-to-
volume ratio, microplastics and nanoplastics act 
as vectors to transport contaminants like heavy 
metals (Brennecke et al., 2016, Rochman et al., 
2014) and persistent organic pollutants (Bakir et 
al., 2014, Lee et al., 2014), which can harm marine 

During an expedition in January 2019, nanoplastics were sampled at a depth of −5,170 m over Cape Basin, 
in the South Atlantic Ocean. Using photo-induced force microscopy, it was suggested that these were 
polyethylene terephthalate (PET-like) particles with various sizes down to 100 nm, at different stages of 
degradation. By using a state-of-the-art Lagrangian 3D model, which includes fragmentation, we backtracked 
virtual particles to map the origin of the PET nanoplastics sampled at this location. Fragmentation processes 
are crucial to understanding the origin of nanoplastics (and microplastics) because they allow for detecting 
when and where particles become so small that they transition to a colloidal state, in which the buoyant 
force becomes negligible. We found that it is very unlikely that the nanoplastic particles entered the ocean 
as nanoplastics and then drifted to the sampling location. We also found that the fragmentation scheme, 
particularly the fragmentation timescale prescribed to the modeled particles, affects how they drift in the 
ocean by the velocity with which they sink. This study contributes to understanding the fate and sources of 
nanoplastics in the deep ocean and the development of 3D backtracking simulations for source attribution 
of ocean plastic.
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organisms that ingest them (Rochman et al., 2013). 
Consequently, studying the transport of micro- and 
nanoplastics to remote and delicate ecosystems 
can be crucial to assessing their environmental 
impact. Compared to the microplastics floating at 
the ocean surface, the micro- and nanoplastics 
suspended in intermediate and deep waters 
remain understudied. Suspended microplastics 
have been sampled below and at the surface 
of the Atlantic Ocean, where the most common 
polymer types found were Polyethylene (PE), 
Polypropylene (PP), and Polystyrene (PS) 
particles, all positively buoyant (Pabortsava and 
Lampitt 2020, Poulain et al., 2019, Egger et al., 
2020). Egger et al. (2020) measured the vertical 
distribution of plastic particles, from 500  µm 
to 5  cm in size, in the North Pacific Subtropical 
gyre, where they reported a power law decline 
with depth in the mass concentration of plastic. 
They found a positive correlation between the 
surface mass concentration and depth-integrated 
concentration at different locations. Moreover, they 
found that particles in the water column are in the 
size range and composition of particles missing 
from the ocean surface, indicating that they are 
most likely fallout from surface particles. In the 
South Atlantic, Zhao et al. (2022) sampled surface 
and water column microplastics at four locations 
in a transect going in and out of the South Atlantic 
Subtropical gyre. On average, they found a vertical 
decrease in particle abundance, with variations in 
the horizontal and vertical distributions of plastic 
particles < 100 µm. Of the particles detected in the 
water column, 65% were negatively buoyant and 
composed of high-density polymers.

From one of the samples collected at −5,170 m 
deep during the same expedition, Weckhuysen 
et al. (2021) detected PET-like nanoplastics 
down to < 100 nm in size seemingly at different 
stages of degradation by using photo-induced 
force microscopy. Their findings suggested that 
these particles could have originated from larger 
particles that fragmented into smaller particles 
while they were sinking or after being deposited 
on the seafloor. Assuming that most of the plastic 
enters the ocean through the surface or close 
to it, this study addresses the possible transport 

pathways of these nanoplastic particles towards 
the abyssal South Atlantic Ocean.

The fragmentation of plastics is a fundamental 
process to understand the transport of plastic in 
the ocean. Fragmentation changes the size and 
shape of particles, consequently changing the 
physical regime in which particles are transported. 
We defined these regimes by performing a 
scaling analysis for negatively buoyant spherical 
plastic particles from 0.01 µm to 100 µm in radius 
(see Text S1 and Table S1). From this analysis, 
we observe that for particles with R < 1 µm, the 
Brownian force dominates compared to the 
buoyant, inertial, and viscous forces (Gigault et 
al., 2021). Hence, particles with R  <  1  µm are 
considered colloidal (Russel et al., 1989, Al Harraq 
and Bharti 2022), i.e., their buoyancy does not 
contribute to their vertical transport. For particles 
with R > 1 µm, the buoyant force dominates over 
the rest, thus, buoyancy starts to be relevant for 
their vertical transport. This size criterion matches 
the convention for the classification of nanoplastics 
proposed by the European Commission (2023) 
and Hartmann et al. (2019), which we used in this 
study to differentiate between passive particles 
or nanoplastics (1 nm to 1,000 nm) and buoyant 
particles or microplastics (1 µm to 1,000 µm).

Regarding the nanoplastics sampled in the 
abyssal South Atlantic, if the particles remained in 
a non-buoyant colloidal state during their journey 
from the surface to −5,170 m, we considered that 
they were transported by the ocean circulation, 
i.e., they followed the movement of the water 
masses. As an indicator, for water masses below 
−2,000  m in the mid-latitude South Atlantic, the 
mean time since these waters were last in contact 
with the surface is 460 ± 20 years (DeVries and 
Primeau, 2011, Primeau, 2005), despite a whole 
spectrum of water and tracer ages being present 
in a water parcel. In contrast, mass production 
of consumer plastics started after World War II 
(Geyer, 2020) and the presence of plastic in the 
geological records started in 1950 (Zalasiewicz et 
al., 2016). Thus, it is unlikely that colloidal particles 
were transported by the ocean circulation to where 
they were sampled because it would have taken 
the nanoplastics hundreds of years to do so.

https://doi.org/10.5281/zenodo.13366084
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As an alternative hypothesis, we here explore 
the possibility that the PET nanoplastics, found 
at the sampling location, fragmented from large 
parent particles that released nanoplastics and 
microplastics during their fallout, speeding up the 
transport of the nanoplastics to the deep ocean. 
The degradation of the parent particles might have 
been initiated at the surface by UV degradation 
and continued during the fallout by hydrolysis 
(Ioakeimidis et al., 2016, Sang et al., 2020). To 
test this hypothesis, we developed and performed 
a three-dimensional Lagrangian simulation in 
which we backtracked particles from the sampling 
location of the nanoplastics towards the possible 
sources at the surface, shedding light on the 
transport mechanisms and possible origins of 
nanoplastics in the deep ocean.

METHODS
Lagrangian Framework Set-Up

The hydrodynamic data used to advect the 
particles is the MOI_GLO12_WEEKLY_run_for_
DAILY_FORECAST data from Mercator Ocean 
(2024). The MOI GLO12 data assimilates outputs 
from the Nucleus for European Modeling of the 
Ocean (NEMO v3.1 with the ORCA12 configuration; 
Madec et al., 2017), with observations via the 
Mercator Assimilation System 2 (SAM2), built 
around a Singular Evolutive Extended Kalman 
filter analysis kernel (SEEK; Tuan Pham et al., 
1998). It contains the daily-averaged analysis 
and forecast Global Ocean Physics on a three-
dimensional grid. The zonal, meridional, and 
vertical components of the velocity are on 
the native C-grid (no interpolation), with 1/12° 
horizontal resolution. In the vertical, the model has 
50 z-coordinate levels with a scaled vertical grid 
spacing from −5,500 m to 0 m that concentrates 
the resolution near the ocean surface. The vertical 
resolution is 1 m at the surface, increasing to 95 
m at −500 m and up to 448 m at the bottom. The 
bathymetry is represented with a partial cell. The 
MOI GLO12 data is provided as a daily means.

We performed Lagrangian simulations in a 
reverse-time mode (van Sebille et al., 2018), in 
which we advected virtual particles in the three-
dimensional flow backward-in-time, combined with 

a vertical diffusion scheme that runs forward in 
time to represent unresolved convective motions. 
The particle trajectories were integrated using the 
OceanParcels framework v.2.4.2 (Delandmeter 
and van Sebille 2019) using a fourth-order Runge-
Kutta integration time step of 1 h. We backtracked 
8,192 virtual particles from the location where 
nanoplastics and microplastics were sampled 
(Weckhuysen et al., 2021, Zhao et al., 2022) to 
ensure statistically significant results. We created 
some variation in the trajectories by setting the 
‘initial’ location of the particles to follow a horizontal 
normal distribution with its center at 32.171°S, 
6.287°E, and a standard deviation of 0.01° To 
avoid the particles hitting the bottom boundary, the 
‘initial’ depth of the particles was set to −5,000 m, 
on the second to last z-level grid cell (−5,052 m 
to −4,617 m), which is 180 m above the seafloor 
depth reported when sampling. All particles were 
backtracked for 12 years and 20 days, from 
January 20, 2019, to January 1, 2007. Each 
particle had an initial size randomly drawn from a 
uniform distribution ranging from 5 × 10−9 m to 5 × 
10−7 m in radius and a constant density of 1,380 kg/
m3. It is important to highlight that the density of 
nanoplastics is unknown, but since buoyancy 
is negligible for particles in the nanoplastic size 
range, assuming a constant density do not affect 
their vertical transport. Also, the radius at which 
nanoplastics cease to be particles is still unknown.

Following Thygesen (2011) recommendations 
for performing a backward-in-time simulation in 
a three-dimensional domain, we backtracked the 
particles from the sampling location backward-
in-time until they reached the surface, where we 
stopped backtracking them. The reason for stopping 
the backtracking of the particles at the surface is 
that when reversing the time in simulations for 
negatively buoyant particles, the particles will 
appear to ‘rise’ towards the surface. Once the 
particles reach the surface, they will continue to 
be forced upwards as we keep backtracking them, 
making them appear as if they were floating, 
although these particles are negatively buoyant. 
If we continue backtracking them after they reach 
the surface, until a time t0, the particles will get 
dispersed by surface currents as if they were 
floating particles. On the contrary, if we perform 
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a forward-in-time simulation of the negatively 
buoyant particles, starting at their positions at t0 
obtained from the backward-in-time simulation, 
the particles will start sinking immediately to the 
seafloor, which will systematically under-represent 
the horizontal dispersion of the particles, creating 
a time asymmetry in the dispersion patterns 
between the backtracking and forward tracking 
simulations.

Regarding the seafloor or bottom boundary 
(where the vertical velocity w  =  0), we reflected 
particles that hit the seafloor. We did not apply the 
same criterion as with the surface, given particles 
are constantly forced towards the surface because 
of the sinking velocity reversed in time. Therefore, if 
particles are released far from the bottom boundary, 
it is unlikely that they will hit the bottom boundary.

Sinking Velocity
This study concerns PET particles, which are 

denser than water, therefore, when submerged 
in the ocean, these particles sink. The sinking 
velocity vs for the particles is defined as

2

s
2R g( 1)v

9




 (1)

in which R is the particle radius, g is the 
gravitational acceleration, ν is the kinematic 
viscosity of the fluid, and β  =ρp/ρf is the density 
ratio between the seawater ρp and the particle ρf. 
Eq. (1) is derived by assuming the plastic particles 
are spherical and there is a vertical force balance 
between the buoyancy force, their weight, and 
Stokes drag. Moreover, Eq. (1) is equivalent to the 
sinking velocity used by de la Fuente et al. (2021), 
Monroy et al. (2017), and Sutherland et al. (2023). 
Since we used Stokes drag to derive Eq. (1), we 
are assuming that particles are in a Stokesian 
regime, in which the particles Reynolds number 
Rep ≪ 1. The particle Reynolds number relates the 
inertial and viscous forces acting on the particle 
and it is defined as Rep ≃ vsR/ v, in which vs is the 
sinking velocity, R is the particle radius, and ν is 
the kinematic viscosity of the fluid.

Since fragmentation is considered in the 
simulations and the particle radius changes 

throughout the simulation, we defined the limit of 
validity of Eq. (1), which is given by the particle 
radius R and density ratio β, in which Rep ≪ 1. For 
PET particles of density 1,380 kg/m3, immersed 
in the ocean water with a density ratio β = [1.31, 
1.35], and assuming ν = 1.5 × 10−6 m2/s, R = 0.1 
mm is the maximum limit of validity of Eq. (1). This 
limit is below the limit suggested by de la Fuente 
et al. (2021), in which the validity of the sinking 
velocity is defined by the Kolmogorov length scale 
in the ocean, with an estimated value of 0.3 mm in 
the ocean mixed layer.

For particles exceeding a radius of 0.1  mm, 
the sinking velocity predicted by Eq. (1) tends to 
be overestimated. This discrepancy is evident 
in Figure 1, in which the red curve illustrates the 
sinking velocity relative to the particle radius for 
particles with a buoyancy ratio of β = [1.31, 1.35]. 
The shaded area in grey denotes the region where 
R > 0.1 mm (Rep > 1). Given that our simulations 
involve particles with R  >  0.1 mm, we used the 
modified terminal velocity given by
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in which C is the Schiller–Naumann coefficient 
(Sutherland et al. 2023). The Schiller-Naumann 
coefficient is an empirical expression that corrects 
the drag coefficient function of spheres sinking in 
a Rep ≪ 1 regime to represent spheres sinking 
in a Rep < 800 regime (Visuri et al., 2012). In 
Figure 1, the dashed blue line illustrates vs∗, 
showing that for particles in the Rep ≪ 1 regime 
(nanoplastics and small microplastics), vs

∗ aligns 
with vs. Meanwhile, for particles in the Rep > 1 
regime (large microplastics and mesoplastics), 
C adjusts the sinking velocity vs

∗, rectifying the 
overestimation introduced by Eq. (1).

Diffusion
To represent unresolved subgrid processes 

in the MOI GLO12 dataset that contribute to the 
dispersion of nanoplastics, such as convective 
motions and molecular diffusion, a vertical and 
an horizontal diffusion scheme were considered. 
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Regarding unresolved convective motions, we 
implemented a stochastic vertical random walk 
kernel using the vertical diffusion coefficients  K z from 
MOI GLO12 data, which is the background vertical 
eddy diffusivity that represents non-parameterized 

vertical mixing processes. The Kz field varies 
spatially and temporally in the domain; thus, to avoid 
accumulation of particles where the Kz gradients are 
high, we implemented a biased diffusive scheme, 
proposed by Ross and Sharples (2004), defined as

  *z
z t s

2K ( x,t ) t
z(t t ) z(t ) K z t B v t

r


      


(3)

Figure 1. Sinking velocity computed with Eq.(1) for buoyancy ratios β = [1.31, 1.35] that correspond to PET particles submerged 
in stratified seawater. The shadowed grey area indicates the region where Rep > 1. The red solid line represents the sinking 
velocity vs given by Eq. (1). The black dotted line indicates the radius limit where the Eq. (1) is not valid anymore. The dashed-
-dotted line indicates the radius in which buoyancy does not contribute to the vertical transport of particles, i.e., the colloidal 
limit. The Blue dashed line shows the modified sinking velocity vs

∗ given by Eq. (2). The nanoplastics radius range is defined 
as R = [1, 1,000]nm, the microplastics is defined as R = [1, 500]µm, and mesoplastics as R = [0.5, 2.5]mm.

in which z is the depth of the particles at a 
particular time, ∆t is the timestep. On the right 
hand side of Eq. (3), the second term corresponds 
to the biased or deterministic term in which Kz′ 
is the local vertical gradient of Kz around the 
particle position x


 at time t. The local Kz is 

linearly interpolated in the vertical to avoid sharp 
gradients when computing the local Kz′. According 
to Thygesen (2011), for heterogeneous turbulence 
in a backward-in-time simulation, this term should 
not be reversed or made negative to avoid particles 
accumulating in regions of low diffusion. The third 
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term corresponds to the random term, in which 
B is a random process generating numbers from 
[−1, 1] and r is the variance with a value of r = 1/3. 
The last term corresponds to the integration of the 
sinking velocity, in which vs

∗ is the sinking velocity 
of the particle. Note that this term is reversed (i.e., 
made negative) because of the backwards-in-
time scheme.

Molecular diffusion, a dominant force in the 
colloidal regime, can be represented as a horizontal 
random walk scheme by adding a stochastic term 
to the integration of the particle trajectory. For 
nanoplastics of R = 0.01 µm, submerged in water 
at 277.15 K, with dynamic viscosity η  =  1.5 × 
10−3 kg m−1 s, the molecular diffusivity is Dh = 1.56 
× 10−6  m2/s (Einstein, 1956, Kholodenko and 
Douglas 1995). For the simulation time span of 
12 years, the root mean square displacement 
obtained by the random walk, with Dh , is equivalent 
to ∼ 24  m, which is insignificant compared to 
the thousands of kilometers the particles are 
dispersed by advection over the same time span. 
Therefore, on ocean scales, the contribution of 
molecular diffusion to the dispersion of particles is 
negligible compared to the dispersion done by the 
large scale and mesoscale dynamics, which are 
fully resolved in the MOI GLO12 dataset.

Regarding the representation of submesoscale 
processes occurring at spatial scales smaller 
than 1/12°, we did not incorporate a random walk 
scheme to represent the unresolved dynamics 
of the MOI GLO12 dataset. Representing 
Lagrangian submesoscale processes in ocean 
general circulation model simulation remains an 
active area of research, necessitating dynamically 
informed parametrizations beyond simple random 
walk schemes (Haza et al., 2012). The primary 
reason for this omission is that a random walk 
scheme would cause particles to jump in and out of 
eddy coherent structures present in the mesoscale 
field. It has been shown that the outer rim of quasi-
coherent eddy structures are responsible for the 
bulk material transport of particles (Denes et al., 
2022). Such imposed behavior could alter particle 
dispersion patterns, deviating from the mesoscale 
flow dispersion. On the other hand, implementing a 
simple random walk assumes a uniform diffusivity 

for the whole domain. However, a uniform 
diffusivity fails in capturing the mixing in areas with 
different eddy activity (van Sebille et al. 2020), 
variations that are present in a three dimensional 
eddy-resolving ocean general circulation model, 
such as in the MOI GLO12.

Kernel for Fragmentation Backwards 
in Time

We developed a fragmentation kernel that ‘un-
fragments’ the virtual particles as we track them 
backward-in-time. Since time is reversed, the 
particles appear to grow at each fragmentation 
event as the simulation progresses. The 
fragmentation scheme is independent of the size 
of the particle and its numerical implementation 
consists of two steps.

The first step in the kernel controls when the 
fragmentation events occur. For this, we define a 
fragmentation probability pf given by

f

| t|

fp 1 e




  (4)

in which ∆t is the simulation timestep and λf is 
the fragmentation timescale or e-folding timescale 
(so that λf is the number of days that a particle 
has to be drifting to have a 63.2% chance of 
fragmenting).

The kernel performs a Bernoulli Trial in which, 
at every simulation timestep and for each particle 
individually, a probability p is randomly drawn from 
a uniform distribution and then compared to pf . If 
p > pf , then there is a fragmentation event for that 
particle. If p < pf , then no fragmentation occurs in 
that timestep for that particle. The second step of 
the kernel determines how big the parent particle 
was before a fragmentation event. In a backwards-
in-time simulation, when a fragmentation event 
occurs, we have to establish what size the parent 
particle of the fragmented particle was. We 
adapted the Turcotte (1986) and Kaandorp et al. 
(2021) fractal model to determine the size of the 
parent particle during a fragmentation event in our 
simulation. This model mimics the fragmentation 
of an object into a range of different-sized objects 
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in one event, which is intuitively like hitting a rock 
with a large hammer.

Similar to the idealized fragmentation model by 
Kaandorp et al. (2021), we assumed that a plastic 
particle resembles a cube of size L and mass M, 
and when (in forward-time) a fragmentation event 
occurs, the cube fragments into several smaller 
cubes of different size classes k with masses 
smaller than M. The number of cubes per size 
class in a fragmentation event depends on the 
mode of fragmentation m, which is the fraction of 
the mass in each size class that fragments into 
smaller size class particles. As an example, Figure 
2 shows a parent particle during a single forward-
time fragmentation event with m  =  0.5, meaning 
that half of the mass of all the size classes is 
fragmented into smaller size class particles. In this 
example, we observe that a single fragmentation 
event creates half a cube of size class k = 0 with 
mass M/2, two cubes of size class k  =  1 with a 
mass M/8 each, eight cubes size class k = 2 of 
mass M/64 each, 32 cubes size class k = 3 of mass 
M/512 each, and so on. In Figure 2, we grouped 
the cubes with the same size class to highlight that 
it is possible to reassemble the parent particle, with 
mass M and size class k = 0, by putting together all 
the fragments. The location where these particles 
come from the parent particle is irrelevant, we 
only care about the number of particles generated 
per size class and their mass relative to the 
parent particle.

The number of fragments per size class formed 
in a fragmentation event can be written as

n(k, m, D) = (1 − m) (2Dm)k (5)

in which k is the size class, m is the fragmentation 
mode, and D is the dimensions of the particle. In 
this study, we consider three-dimensional objects 
(D = 3), but this fragmentation can also describe 
two-dimensional objects (D  =  2) fragmentation 
such as plastic films (Kaandorp et al., 2021). The 
mass of a particle of a particular size class is given 
by Mk  =  M0/2kD, in which M0 is the mass of the 
parent particle, k is the size class, and D is the 
fragmentation dimensions. We limited the kernel 
to only consider or track particles that fragmented 

into size classes k ∈ [0, 1, 2, 3], ignoring size 
classes k > 3, to avoid particles to ‘grow’ infinitely 
(backwards in time). For the same reason, when 
the particles radius become larger than 0.1 mm 
we stopped them from un-fragmenting, making 
the size distribution at the end of the simulation to 
converge. This limit agrees with the limit of validity 
of Eq. (1).

In the Supplementary Material, Text S2 and 
Figure S2, we conducted a comparison of three 
simulations, each based on a distinct maximum size 
class kmax, with a constant λf set at 1,000 days.

The analysis revealed a reduction in both the 
time and the average number of fragmentation 
events required to go from the size distribution 
at the simulation’s beginning (at the sampling 
location) to the size distribution at the end of 
the simulation. This reduction occurred when 
increasing the size classes considered to 
kmax = 4, as opposed to considering up to kmax = 3 
classes. Conversely, limiting kmax  =  2 had the 
opposite effect. Thus, altering the number of size 
classes had a comparable effect on modifying 
the fragmenting timescale λf, a parameter 
controlling the rate of particle fragmentation. 
To understand this influence, we conducted a 
sensitivity analysis, varying λf within the range 
of [100, 1,000, 10,000, 23,000] days. The 
degradation timescales λf considered correspond 
to an equivalent particle half-life (t0,5  =  λf ln(2)) 
of [0.19, 1.9, 19, 44] years, respectively. The 
λf = 23,000 days, matches the PET microplastics 
half-life (normalized to subtropical marine 
conditions) reported in accelerated degradation 
experiments in an UV chamber (Delre et al., 
2023). Additionally, we considered shorter λf, 
based on the possibility that, due to their size, 
fragmentation timescales of nanoplastics may be 
faster compared to microplastic and bulk plastics 
estimates. We highlight, nevertheless, that there 
are no reported degradation rates for nanoplastics 
that support this hypothesis. The chosen values 
reflect the absence of standardized degradation 
rates for micro- and nanoplastics in marine 
environments, prompting us to define this range 
for a comprehensive understanding of how λf 

regulates particle transport.

https://doi.org/10.5281/zenodo.13366084
https://doi.org/10.5281/zenodo.13366084
https://doi.org/10.5281/zenodo.13366084
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The second step of the kernel consists of 
determining from which size class k ∈ [0, 1, 2, 3] 
the particle un-fragments into the parent particle. To 
determine this, we performed a random sampling 
of the size classes in which each size class has a 
size-independent probability based on the number of 
fragments per size class. This probability is given by

 
i

k 3

i
k 0

n(k,m)p (k,m)
n k ,m






(6)

in which k is the size class, m is the 
fragmentation mass, and n(k, m) is the number of 
particles per

Figure 2. Diagram of a fragmentation event in forward-time. A cubic particle of mass M fragments into several smaller 
particles of different size classes: half a particle k = 0 with mass M/2, two k = 1 cubes with mass M/8, eight k = 2 cubes with 
mass M/64, and 32 k = 3 cubes with mass M/512. There is an infinite number of cubes of size classes smaller than k = 3.

size class. To illustrate this, based on Eq. (6), 
the probability of a particle un-fragmenting from 
a particle with mass M/2 to the parent particle 
with mass M (i.e., doubling its mass) is pk (k=0, 
m=1/2) = 0.5/42.5 ≃ 0.01. The probability that the 
particle un-fragments from k = 1 to k = 0 (i.e. eight-
fold increase in mass) is pk (k=1, m=1/2) ≃ 0.05; 
the probability for the particle to un-fragment from 
k =2 to k  =0 (i.e. 64 times its mass) is pk (k=2, 
m=1/2) ≃ 0.19; and the probability of a particle to 
un-fragment from k =3 to k =0 (512 times its mass) 
is pk (k=3, m=1/2) ≃ 0.75.

Therefore, when there is a fragmentation event, 
it is most likely that the particle will grow 512 times 
its mass. We set an upper size limit of 1 × 10−4 m 
at which particles stop un-fragmenting to prevent 
infinite ‘growth’ of particles. Particles below this 
limit can still un-fragment above this limit, but they 
still converge towards a radius below 1 × 10−3 m, 
as we limited the fragmenting size classes to k = 3.

To remain consistent with the assumption that 
particles are spherical, we computed an equivalent 
radius of the particles according to their mass. 
The equivalent radius of a cube particle with size 
L is 33R 3L / (4 ) 0.62L  . In the case of the 

half k = 0 particle created in a fragmentation event, 
its equivalent radius is 33R 3L / (8 ) 0.49L  .  
When a particle un-fragments from a size class 
k = [1, 2, 3] to a size class k = 0, the new radius of 
the particle is given by

kD 3 k3
0 k kR (k ) 2 R 2 R  (7)

in which R0 is the radius of the particle after 
un-fragmenting, Rk is the radius of the particle 
before un-fragmenting, k is the size class, and 
D = 3. When a particle un-fragments from half a 
particle k = 0 to a complete particle, the new radius 
is given by

33
0 k 0 k 0R 2R 1.25R   (8)

To summarize, when there is a fragmentation 
event, particles will un-fragment into particles 
bigger than they were and, according to the second 
step of this kernel, it is most likely that the particle 
would increase 23 times its radius (k = 3 → 0) and 
less likely that it would grow 1.25 times its radius.
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RESULTS
The surface as possible origin of PET 
Nanoplastics

Most particles backtracked from the sampling 
locations come from the ocean surface. In particular, 
all particles from simulations with λf  =100 days 
reached the sampling location at −5,000 m from 
the ocean surface within the 12 years. For slower 
fragmenting timescales, such as λf  =  1,000 days, 
λf  =  10,000 days, and λf  =  23,000 days, 86.3%, 
4.3%, and 0.8% of particles came from the surface, 
respectively. The rest of the particles remained in 
intermediate waters during the 12 years of simulation.

Figure 3 shows the location at the surface where 
particles originated, shown as different markers 
and colors according to its λf . The star shows the 
location from where particles were backtracked. 
We found that the origin of the particles at the 
surface depends on the fragmentation timescale 
λf . For smaller λf, the origin position of particles 
is horizontally concentrated by a few hundred 
kilometers around the sampling location, compared 
to larger λf, where the origin is more dispersed. As 

a reference, the median horizontal displacement 
from the surface to the sampling location is below 
1,000  km for all the λf considered. This means 
that, for half of the particles that came from the 
surface, the location where they started sinking 
can be traced back within a 1,000 km radius from 
the sampling location. However, the percentage 
of particles originating from distances smaller 
or equal to 1,000  km increases for the shorter 
degradation timescales considered.

As we see in Figure 3, most particles 
originating at the surface of the open ocean have 
their origin away from the coast. Only 0.08% of all 
particles, across all λf, originated within 100  km 
from the coast. In particular, all these particles had 
a λf  =  1000 days, showing that if particles have 
fast fragmenting timescales, they would have sunk 
from relatively close distances from the sampling 
location. For the slower fragmenting timescales, it 
is more probable that the particles sunk away from 
the coastlines. The drift time that particles took 
to travel from the surface towards the sampling 
location was longer for particles with large 
fragmentation timescale. For instance, particles

Figure 3. Map showing the probable origin of particles at the surface. The star shows the sampling location for the nanoplastics. 
Each marker and color show the locations for simulations with different fragmentation timescale λf . The black dashed lines 
show the equidistant lines from the sampling location, computed with the great circle distance, with 1,000 km between them.

with λf = 100 days had a median drift time of 
310 days; particles with λf  =  1,000 days had a 
median drift time of 5.9 years; for particles with 
λf = 10,000 days and λf = 23,000 days, the median 
drift time was around 8.5 years.

Figure 4 shows the empirical cumulative 
distributions of the particle radius at the surface, 

before sinking towards the sampling location. Each 
colored line represents the particles with different 
fragmentation timescales λf . We see that for all 
distributions, except λf = 10,000 days, the radius of 
particles is within the microplastics size range R > 1 
µm. Regarding the λf = 10,000 days distribution, one 
out of 8,192 particles, reached the sampling location 
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starting its journey as a nanoplastic (with R < 1 µm). 
Also, we see that all the distributions overshoot 
from the radius limit (L = 1×10−4 m) imposed in the 
fragmentation kernel because particles that are 
near and below the radius limit are still able to un-
fragment (backward-in-time) into larger particles 
exceeding the limit. Nevertheless, the upper bound 
for all distributions converges towards 1 × 10−3 m. 
The distributions are skewed towards bigger 
particles for fast fragmenting time scales, whereas 
the slower fragmenting timescales are skewed 
towards smaller particles. The skewness of the 
distributions is because, for faster fragmenting time 
scales, there are more particles overshooting the 

radius limit, thus the distributions have more bigger 
particles than the slower fragmenting time scales 
distributions.

Vertical Distribution of Nanoplastics
To understand if nanoplastics can form at 

the surface of the ocean and sink to −5,000  m, 
we filtered the trajectories of the particle when 
R  <  1 µm, i.e., when they are nanoplastics and 
the buoyant forces do not dominate. We computed 
the probability of finding nanoplastics at a 
particular depth and time by binning the number of 
nanoplastic particles in bins of 100 m by 1 day for 
the entire water column

Figure 4. Empirical cumulative distribution functions (ECDF) of the particle size distribution of parti-
cles at the surface before being transported to the sampling location, according to its fragmentation 
timescale λf . The black vertical lines mark the 1 µm colloid limit for nanoplastics and the limit in 
which the fragmentation kernels stop un-fragmenting the particles.

and simulation time, then normalizing by the total 
number of nanoplastics in that day. Figure 5 shows in 
different panels the vertical probability distributions 
for finding particles with R < 1 µm at a specific day. 
Across all the fragmenting timescales, we see that 
a smaller fragmentation timescale λf  results in less 
time for particles to drift as nanoplastics before 
reaching the sampling location. In particular, we see 
that for particles with λf  ≤ 1,000 days, almost all the 

nanoplastics drift below −2,500 m in the 12 years 
before reaching the sampling location. We see 
that a small fraction of nanoparticles can drift from 
above −2,500 m towards the sampling location, but 
none of them can drift from the surface towards 
the sampling location. Regarding the λf  = 10,000 
days and λf   =  23,000 days distribution, we see 
that the particle trajectories were more dispersed 
before 2014, showing particle trajectories above 
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the −2,500 m level. Due to their larger λf , particles 
cannot un-fragment from larger particles and most 
of them remain nanoplastics during the span of the 

simulation (backwards-in-time), thus the distribution 
is better represented. For λf  = 10,000 days, only 
one particle

Figure 5. Figures showing the probability distributions of finding nanoplastics in the water column (from −5,500 m to 0 m 
deep) at a particular time throughout the simulation. The panels show the vertical distribution for a particular fragmenting 
timescale λf , arranged from fast (top) to slow (bottom). The color scale indicates the probability of nanoplastics present 
in a particular depth for a particular time. The grey shading indicates the absence of particles at that depth and time.

Figure 6. Empirical cumulative distribution functions (ECDF) of the depth where particles fragment 
into nanoplastics (R < 1 µm). Each fragmenting timescale λf is shown as a different color curve. The 
black vertical lines show the sampling location depth and the surface, respectively.
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and 68% for λf = 100 days. In the region from 
5,000 m to 5,500 m, the probability is ∼ 7% for 
λf ∈ [10,000, 23,000], 14% for λf  =  1,000 days, 
and 31% for λf = 100 days. In Figure S2, in the 
Supplementary Material, we show a map of the 
locations where nanoplastics were formed.

DISCUSSION
As seen in Figure 6, it is unlikely but not 

impossible that PET nanoplastics (R < 1 µm) 
formed at the surface and then sank to −5,000 
m. Theoretically, 1.32 × 10−5 m s−1 is the minimum 
sinking velocity needed for a particle to sink from 
the surface to −5,000 m in 12 years, assuming 
the ocean is completely still. Thus, from Eq.(1), 
the minimum radius, at any depth, for a particle to 
reach −5,000 m in less than 12 years, would range 
from 5.1 × 10−6 m to 5.42 × 10−6 m. Following this 
reasoning, it might be possible for nanoplastics to 
reach −5,000 m in 12 years. However, the ocean 
is in constant motion with dynamics at different 
length scales that can accelerate or decelerate 
their fallout.

As an alternative hypothesis is that nanoplastics 
fragmented from large parent particles that 
released nanoplastics and microplastics during 
their fallout. The fragmentation could have 
happened in several events and the fragmentation 
of the particles might have been initiated at 
the surface by UV degradation and continued 
during the fallout by hydrolysis (Ioakeimidis et 
al. 2016, Sang et al. 2020). Our results suggest 
that fragmentation is a key factor that might 
explain the presence of nanoplastics in the 
abyssal ocean. In the 12 years of simulations, we 
demonstrated that, for the slowest fragmentation 
timescales considered in this study, λf  =  10,000 
days and λf  =  23,000 days, the most probable 
origin of nanoplastics remains the deep ocean 
(<  −2,500  m). Nevertheless, we believe that by 
extending the simulation time beyond 12 years, 
the likelihood of nanoplastics originating at the 
surface would most likely increase.

For shorter degradation timescales, it is more 
evident that the nanoplastics found in the abyssal 
South Atlantic must have fragmented in the vicinity 
of the sampling location, and most likely in Cape 
Basin, the same region where nanoplastics were 

sampled. For small degradation timescales, the 
particles had to start their fallout as microplastics 
(R > 1 µm) to reach the sampling location. It is 
impossible for particles fragmenting at a λf  ≤ 1,000 
days to reach −5,000 m. Regarding the location 
at the surface where particles started their fallout, 
we found that half of the particles could be traced 
back within a 1,000 km radius, as seen in Figure 
3. The Namib desert is the nearest coast, located 
approximately 1,000 km away from the sampling 
location. This suggests that for fast degradation 
timescales, it is most likely that particles started 
their fallout in the open ocean rather than in coastal 
regions. However, we stopped the backtracking 
when particles reached the surface (in a backward-
in-time scheme) because the negatively buoyant 
particles are constantly forced towards the surface, 
changing their dynamics (Thygesen 2011). This is 
a limitation for three-dimensional backtracking of 
PET particles, in which we can only establish the 
location where the particles started sinking from 
the surface. 

We acknowledge the potential asymmetry 
between forward-tracking and backtracking 
simulations, particularly concerning the behavior 
of fragmenting negatively buoyant particles. This 
asymmetry becomes evident when comparing 
a forward-tracking simulation of microplastics 
(R≥1μm) fragmenting forward in time from 
the surface with a backtracking simulation of 
nanoplastics (R≤1μm) un-fragmenting backward 
in time from the sampling location. These two 
cases cannot be compared expecting the same 
outcomes. In a forward-in-time scheme, releasing 
particles as microplastics results in particles with 
small λf ​fragmenting rapidly into nanoplastics, 
becoming colloidal somewhere in the water 
column. We expect that none or a few of these 
particles will reach the sampling location, while 
the majority will become nanoplastics closer to the 
surface or sink to the ocean floor before becoming 
nanoplastics. For longer timescales, starting as 
microplastics from the surface, most particles will 
first hit the ocean floor before fragmenting into 
nanoplastics, never reaching the sampling location 
(assuming resuspension is ignored). In contrast, 
the backtracking simulation imposes the condition 
that all particles reach the sampling location as 

https://doi.org/10.5281/zenodo.13366084
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nanoplastics. We explore possible trajectories that 
could have brought the particles to the sampling 
location under these imposed conditions. 
We then analyze which of these trajectories 
represent possible origins for the particles. For 
nanoplastics found at the sampling location, we 
assume the only origin of plastic is the surface, 
and the particles could have originated from the 
surface as either microplastics or nanoplastics. To 
understand the dynamics and possible dispersion 
of PET microplastics near the surface or in the 
mixed layer, a forward-in-time simulation would 
be necessary.

In general, it is difficult to prescribe the 
best fragmentation timescale for PET particles 
fragmenting under environmental conditions 
due to the lack of reported and standardized 
degradation rates of nanoplastics or microplastics 
under marine environments (Chamas et al., 2020). 
Also, the variability of degradation mechanisms 
depending on the various regions of the ocean 
makes prescribing a fragmentation timescale more 
challenging. According to Müller et al. (2001), the 
generally predicted lifetime of PET ranges from 
16 to 48 years, suggesting that PET might be 
persistent in the environment.

However, considering the dark and cold 
conditions found in the deep ocean, the expected 
half-life of particles might be longer than the 
longest fragmentation timescale considered of 
λf =23,000 days. Even if we considered a greater 
fragmentation timescale than λf  =  23,000 days, 
we would not expect to have very different results 
for the 12 years of simulations. The results would 
be similar to λf  =  23,000 days and λf  =  10,000 
days, as almost all particles fragment only a few 
times in 12 years, making them remain in the 
colloidal regime, preventing them to reach the 
surface. It is necessary to perform longer than 12 
years simulations to allow particles with a longer 
fragmenting timescale to reach the surface. This 
requires the use of longer datasets with velocity 
fields going further into the past with similar 
characteristics to the MOI GLO12 dataset.

The region from −5,000 m to −4,000 m, where 
most of the particles fragment into nanoplastics 
drifting towards the sampling location, has the 
coarsest vertical resolution in the MOI GLO12 

velocity fields. The coarse resolution overlooks 
the dynamics occurring close to the deep seafloor 
that stirs, settles, and re-suspends material that 
drifts close to the seafloor, potentially affecting the 
dispersion of deep nanoplastics. By considering 
models with a better representation of these 
processes at the deepest grid cells, we believe 
that the dispersion patterns would change and 
more analysis could be performed, for example, 
estimating areas of potential resuspension of 
particles as probable sources of nanoplastics.

CONCLUSION
Fragmentation of plastic particles is crucial to 

simulate the transport of nano- and microplastics 
in the ocean, especially nanoplastics originating 
from indirect sources, like fragmentation from 
bulk plastics or microplastics. By including 
fragmentation in three-dimensional backtracking 
Lagrangian simulations, it is possible to 
estimate the regions in the ocean where these 
nanoplastics originate according to where they 
have been sampled in the environment. Notably, 
this fragmentation changes the particle size, 
transitioning from a buoyant to a colloidal regime, 
thereby modifying its vertical dynamics.

By focusing on the vertical distribution of the 
particles after backtracking, we concluded that 
nanoplastics with short fragmentation timescales, 
such as λf = 100 days and λf = 1,000 days, could 
not sink from the surface starting as nanoplastics 
and reach the sampling location at −5,000 m 
deep. Contrary to this, for the longer fragmentation 
timescales considered, λf  =  10,000 days and 
λf  =  23,000 days, this scenario is possible but 
highly unlikely within the 12 years considered.

Understanding the degradation rates of 
nanoplastics in the ocean environment is a priority, 
as it can inform whether nanoplastics are fast 
to degrade or whether they accumulate in the 
marine environment for decades. Quantifying 
the fragmentation timescales requires more 
experimental data for nanoplastics with different 
polymer compositions and under varying 
environmental conditions. This data would 
significantly enhance the models for degradation 
and fragmentation of nano- and microplastics, which 
in turn would improve the transport simulations.
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SUPPORTING INFORMATION
The code and scripts are available at https://

github.com/OceanParcels/Backtracking_Abyssal_
Nanoplastics.git and https://zenodo.org/records/ 
13366084
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