Protective effect of adenosine triphosphate against cisplatin-induced necrotic and degenerative oral mucositis in rats

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Adenosine triphosphate, Cisplatin, Tongue, Rat, Oxidative injury

Abstract

Inflammation, oxidative damage, and adenosine triphosphate (ATP) depletion play a role in the pathogenesis of cisplatin (CIS)-induced oral mucositis. Objective:  The purpose of this research is to examine the impact of ATP against potential oral mucositis development in cisplatin-treated rats. Methodology All rats were randomly assigned to four groups, namely healthy control group (HG), ATP group (ATPG), Cisplatin group (CISG), and ATP + Cisplatin group (ATCS). Firstly, ATP 4 mg/kg was administered via intraperitoneal injection (IP) to both ATPG and ATCS groups. The same volume of normal saline was injected into HG and CISG groups. After 1 h, cisplatin 5 mg/kg was administered via IP to CISG and ATCS groups. The drugs were taken 1x1 for 7 d. Later, tongue tissues were collected from all groups. Biochemical, macroscopic, and histopathological examinations were performed on all tissues. Results:  ATP inhibited cisplatin-induced oxidative damage and pro-inflammatory cytokines levels in tongue tissue. In the CIS group, a significant number of distinct sulcus formations were found in the apex and corpus, as well as a few ulcer foci in the corpus, significant papilla loss, and bleeding. Meanwhile, in the ATP group, a similar appearance to healthy tissue was observed. Histopathologically, it was determined that in cisplatin-aggravated tongue tissue damage, filiform papillae decreased when ATP was administered, and the arrangement and structures of the epithelium, blood capillaries, muscle groups, and adipose cell groups were normal. Conclusions:  Oral mucositis caused by cisplatin is alleviated by ATP. These findings may be useful for developing new therapeutic approaches to prevent or treat mucositis, a side effect so severe that can lead to treatment discontinuation.

Downloads

References

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78. doi: 10.1016/j.ejphar.2014.07.025

» https://doi.org/10.1016/j.ejphar.2014.07.025

Abdolmaleki S, Khaksar S, Aliabadi A, Panjehpour A, Motieiyan E, Marabello D, et al. Cytotoxicity and mechanism of action of metal complexes: an overview. Toxicology. 2023;492:153516. doi: 10.1016/j.tox.2023.153516

» https://doi.org/10.1016/j.tox.2023.153516

Oun R, Moussa YE, Wheate NJ. Correction: The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018;47(23):7848. doi: 10.1039/c8dt90088d

» https://doi.org/10.1039/c8dt90088d

Curra M, Soares LA Jr, Martins MD, Santos PS. Chemotherapy protocols and incidence of oral mucositis. An integrative review. Einstein (Sao Paulo). 2018;16(1):eRW4007. doi: 10.1590/s1679-45082018rw4007

» https://doi.org/10.1590/s1679-45082018rw4007

Goktuna G, Arslan GG. Investıgatıon of oral mucosıtıs incıdence and rısk factors in patıents receıvıng chemotherapy. J Basic Clin Health Sci. 2023;7:747-755. doi: 10.30621/jbachs.1199539

» https://doi.org/10.30621/jbachs.1199539

Pulito C, Cristaudo A, Porta C, Zapperi S, Blandino G, Morrone A, et al. Oral mucositis: the hidden side of cancer therapy. J Exp Clin Cancer Res. 2020;39(1):210. doi: 10.1186/s13046-020-01715-7

» https://doi.org/10.1186/s13046-020-01715-7

Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 2002;128(4):1271-81. doi: 10.1104/pp.010999

» https://doi.org/10.1104/pp.010999

Choi YM, Kim HK, Shim W, Anwar MA, Kwon JW, Kwon HK, et al. Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ros generation. Plos One. 2015;10(8):e0135083. doi: 10.1371/journal.pone.0135083

» https://doi.org/10.1371/journal.pone.0135083

Dunn J, Grider MH. Physiology, Adenosine Triphosphate. 2023 Feb 13. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.

Saquet AA, Streif J, Bangerth F. Changes in ATP, ADP and pyridine nucleotide levels related to the incidence of physiological disorders in 'Conference' pears and 'Jonagold' apples during controlled atmosphere storage. J Horticult Sci Biotech. 2000;75:243-9. doi: 10.1080/14620316.2000.11511231

» https://doi.org/10.1080/14620316.2000.11511231

Erdem KT, Bedir Z, Ates I, Kuyrukluyildiz U, Coban TA, Yazici GN, et al. The effect of adenosine triphosphate on propofol-induced myopathy in rats: a biochemical and histopathological evaluation. Korean J Physiol Pharmacol. 2021;25(1):69-77. doi: 10.4196/kjpp.2021.25.1.69

» https://doi.org/10.4196/kjpp.2021.25.1.69

Karakurt Y, Ucak T, Tasli N, Ahiskali I, Şipal S, Kurt N, et al. The effects of lutein on cisplatin-induced retinal injury: an experimental study. Cutan Ocul Toxicol. 2018;37(4):374-9. doi: 10.1080/15569527.2018.1482494

» https://doi.org/10.1080/15569527.2018.1482494

Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2-3):143-51. doi: 10.1016/0009-8981(91)90067-m

» https://doi.org/10.1016/0009-8981(91)90067-m

Egilmez OK, Kokten N, Kalcioglu MT, Ekici AI, Serifler S, Yesilada E. Investigation of the protective effect of nigella sativa oil in cisplatin induced oral mucositis: an experimental study. Turk Arch Otorhinolaryngol. 2020;58(1):10-5. doi: 10.5152/tao.2020.4733

» https://doi.org/10.5152/tao.2020.4733

Stanković JS, Selaković D, Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin-the crucial limitation or potential therapeutic target? Int J Mol Sci. 2023;24(19):14574. doi: 10.3390/ijms241914574

» https://doi.org/10.3390/ijms241914574

Chand Yadav Y. Corrigendum to "Effect of cisplatin on pancreas and testes in Wistar rats: biochemical parameters and histology" [Heliyon 5 (8) (2019) e02247]. Heliyon. 2020;6(4):e03688. doi: 10.1016/j.heliyon.2020.e03688

» https://doi.org/10.1016/j.heliyon.2020.e03688

Nguyen H, Sangha S, Pan M, Shin DH, Park H, Mohammed AI, et al. Oxidative stress and chemoradiation-induced oral mucositis: a scoping review of in vitro, in vivo and clinical studies. Int J Mol Sci. 2022;23(9):4863. doi: 10.3390/ijms23094863

» https://doi.org/10.3390/ijms23094863

Jadoon S, Malik A. A review article on the formation, mechanism and biochemistry of mda and mda as a biomarker of oxidative stress. Int J Adv Res. 2017;12(5):811-8. doi: 10.21474/IJAR01/6024

» https://doi.org/10.21474/IJAR01/6024

Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 2017;524:13-30. doi: 10.1016/j.ab.2016.10.021

» https://doi.org/10.1016/j.ab.2016.10.021

Rybak LP, Husain K, Morris C, Whitworth C, Somani S. Effect of protective agents against cisplatin ototoxicity. Am J Otol. 2000;21(4):513-20.

Martins CC, Oliveira AS, Silva LA, Primo MG, Carvalho Lira VB. Biological indicators of oxidative stress [malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase] and their application in nutrition. In: Patel VB, Preedy VR, eds. Biomarkers in Nutrition. London: Springer International Publishing; 2022. p. 833-56.

- Başak K, Demir MG, Altintoprak N, Aydin S. The effect of antioxidant agents on cisplatin-induced laryngeal histological alterations in rats. J Med Food. 20211;24(2):197-204. doi: 10.1089/jmf.2019.0235

» https://doi.org/10.1089/jmf.2019.0235

Diesch T, Filippi C, Fritschi N, Filippi A, Ritz N. Cytokines in saliva as biomarkers of oral and systemic oncological or infectious diseases: a systematic review. Cytokine. 2021;143:155506. doi: 10.1016/j.cyto.2021.155506

» https://doi.org/10.1016/j.cyto.2021.155506

Bell A, Kasi A. Oral Mucositis. 2023 May 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025

Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM. Serum levels of NFkappaB and pro-inflammatory cytokines following administration of mucotoxic drugs. Cancer Biol Ther. 2008l;7(7):1139-45. doi: 10.4161/cbt.7.7.6207

» https://doi.org/10.4161/cbt.7.7.6207

Gronemann ST, Ribel-Madsen S, Bartels EM, Danneskiold-Samsoe B, Bliddal H. Collagen and muscle pathology in fibromyalgia patients. Rheumatology (Oxford). 2004;43(1):27-31. doi: 10.1093/rheumatology/keg452

» https://doi.org/10.1093/rheumatology/keg452

Bouitbir J, Alshaikhali A, Panajatovic MV, Abegg VF, Paech F, Krahenbuhl S. Mitochondrial oxidative stress plays a critical role in the cardiotoxicity of sunitinib: Running title: sunitinib and oxidative stress in hearts. Toxicology. 2019;426:152281. doi: 10.1016/j.tox.2019.152281

» https://doi.org/10.1016/j.tox.2019.152281

Dilber M, Salcan İ, Bayram R, et al. The effect of adenosine triphosphate on oral mucosity in rats due to sunitinib administration. Lat Am J Pharma. 2021;40(10):2330-6.

Antonioli L, Pacher P, Hasko G. Adenosine and inflammation: it's time to (re)solve the problem. Trends Pharmacol Sci. 2022;43(1):43-55. doi: 10.1016/j.tips.2021.10.010

» https://doi.org/10.1016/j.tips.2021.10.010

Trautmann A. Extracellular ATP in the immune system: more than just a "danger signal". Sci Signal. 2009;2(56):pe6. doi: 10.1126/scisignal.256pe

» https://doi.org/10.1126/scisignal.256pe

Hasko G, Kuhel DG, Salzman AL, Szabo C. ATP suppression of interleukin-12 and tumour necrosis factor-alpha release from macrophages. Br J Pharmacol. 2000;129(5):909-14. doi: 10.1038/sj.bjp.0703134

» https://doi.org/10.1038/sj.bjp.0703134

Haskó G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, et al. Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J. 2000;14(13):2065-74. doi: 10.1096/fj.99-0508com

» https://doi.org/10.1096/fj.99-0508com

Haskó G, Szabo C, Nemeth ZH, Kvetan V, Pastores SM, Vizi ES. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol. 1996;157(10):4634-40.

Németh ZH, Lutz CS, Csóka B, Deitch EA, Leibovich SJ, Gause WC, et al. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J Immunol. 2005;12(175):8260-70.

Essawy AS, Noha MI, Sara GT. Glycyrrhiza glabra root extract alleviates cyclophosphamide induced mucositis of the tongue in adult male albino rats. The Egypt J Histol. 2022;45(4):1222-34.

Vilar CJ, Ribeiro SB, Araujo AA, Guerra GC, Araújo RF Jr, Brito GA, et al. Effect of gold nanoparticle on 5-fluorouracil-induced experimental oral mucositis in hamsters. Pharmaceutics. 2020;12(4):304. doi: 10.3390/pharmaceutics12040304

» https://doi.org/10.3390/pharmaceutics12040304

Kadarullah O, Tamtomo DG, Wasita B, Setiamika M. Animal model of cisplatin-induced oral mucositis: dose optimization. Acta Med Acad. 2023;52(3):188-94. doi: 10.5644/ama2006-124.422

» https://doi.org/10.5644/ama2006-124.422

Downloads

Published

2025-03-24

Issue

Section

Original Articles

How to Cite

Salcan, I., Dilber, M., Suleyman, Z., Yucel, N., Salcan, S., Kesan, S., Yazici, G. N., Celik, F., Koseturk, M., Alp, N. A., & Suleyman, H. (2025). Protective effect of adenosine triphosphate against cisplatin-induced necrotic and degenerative oral mucositis in rats. Journal of Applied Oral Science, 33, e20250007. https://doi.org/10.1590/