Microbial signatures in head and neck squamous cell carcinoma

an in silico study

Authors

  • Loganathan Kavitha The Tamil Nadu Dr. MGR Medical University. Ragas Dental College and Hospital, Department of Oral and Maxillofacial Pathology https://orcid.org/0000-0001-7647-0234
  • Manogaran Kuzhalmozhi Aringnar Anna Memorial Cancer Research Institute https://orcid.org/0009-0007-4085-6099
  • Jayaseelan Vijayashree Priyadharsini Saveetha Institute of Medical and Technical Sciences. Saveetha University, Saveetha Dental College & Hospital
  • Arunachalam Arun Kumar Independent Researcher
  • Krishna Mohan Rao Umadevi The Tamil Nadu Dr. MGR Medical University. Ragas Dental College and Hospital. Department of Oral and Maxillofacial Pathology
  • Kannan Ranganathan The Tamil Nadu Dr. MGR Medical University. Ragas Dental College and Hospital. Department of Oral and Maxillofacial Pathology https://orcid.org/0000-0003-2149-4145

DOI:

https://doi.org/10.1590/

Keywords:

Microbiome, In silico, Oral squamous cell carcinoma, HNSCC, UALCAN, TCMA

Abstract

Objectives  The oral cavity harbors a plethora of bacterial species. Dysbiosis of oral and gut microbiota is associated with several oral and systemic pathologies, such as cancer, obesity, diabetes, atherosclerosis and gastrointestinal diseases. Imbalance in the oral-gut microbial axis has been associated with head and neck squamous cell carcinoma (HNSCC). This study aims to analyze the bacterial profile of HNSCC across various taxonomic units, investigate molecular patterns associated with prevalent bacterial phylum in HNSCC, and compare the bacterial profile in HNSCC and gastrointestinal (GI) carcinoma using computational analysis. Methodology  The microbe-host transcriptomic, proteomic, and epigenetic analyses of HNSCC and GI carcinomas were performed using The Cancer Microbiome Atlas (TCMA) database. The differential expression of the host’s mRNA transcripts and proteins associated with tumor microbiome were analyzed using The University of Alabama at Birmingham Cancer data analysis (UALCAN) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) websites. Results  A decrease in Actinobacteria and an enrichment of Flavobacteria at the class level, Neisseriales, Pasteurellales, and Campylobacterales at the order level, Pasteurellaceae, Flavobacteriaceae, Campylobacteraceae, and Peptoniphilaceae at the family level, and Hemophilus, Porphyromonas, and Leptotrichia at the genus level were observed in HNSCC compared to the normal mucosa. RICTOR protein, mRNA transcripts (HIST1H2BB, SCARNA11, TBC1D21 gene), and hsa-miR-200a-5p miRNA were significantly correlated with prevalent bacterial species in HNSCC. A major increase in Actinobacteria, Fusobacteria, and Spirochaetes was observed in HNSCC compared to GI carcinoma. Conclusion  The oral-gut microbial dysbiosis, as reflected by the differential abundance of bacterial species in oral and GI carcinomas, suggests the implication of tumor microbiome and their genomic interactions with the host in carcinogenesis.

Downloads

References

- Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000. 2021;87(1):76-93. doi: 10.1111/prd.12388

» https://doi.org/10.1111/prd.12388

- Radaic A, Kapila YL. The oralome and its dysbiosis: new insights into oral microbiome-host interactions. Comput Struct Biotechnol J. 2021;19:1335-60. doi: 10.1016/j.csbj.2021.02.010

» https://doi.org/10.1016/j.csbj.2021.02.010

- Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024-33. doi: 10.1111/cmi.12308

» https://doi.org/10.1111/cmi.12308

- Stasiewicz M, Karpinski TM. The oral microbiota and its role in carcinogenesis. Semin Cancer Biol. 2022;86(Pt 3):633-42. doi: 10.1016/j.semcancer.2021.11.002

» https://doi.org/10.1016/j.semcancer.2021.11.002

- Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. doi: 10.3322/caac.21834

» https://doi.org/10.3322/caac.21834

- Wang Y, Wang Y, Wang J. A comprehensive analysis of intratumor microbiome in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol. 2022;279(8):4127-36. doi: 10.1007/s00405-022-07284-z

» https://doi.org/10.1007/s00405-022-07284-z

- La Rosa GRM, Gattuso G, Pedullà E, Rapisarda E, Nicolosi D, Salmeri M. Association of oral dysbiosis with oral cancer development. Oncol Lett. 2020;19(4):3045-58. doi: 10.3892/ol.2020.11441

» https://doi.org/10.3892/ol.2020.11441

Hassan S, Mirza T, Khatoon A, Bukhari U, Shaikh F. In silico analysis of differentially expressed genes in colorectal carcinoma. Adv Life Sci. 2023;10(1):37-41.doi: 10.62940/als.v10i1.1345

» https://doi.org/10.62940/als.v10i1.1345

- Raj S, Rathi B, Mehra P, Asthana S, Kumar D. Deciphering the role of c-MET in metabolic reprogramming of head and neck squamous cell carcinoma via in silico analysis. Chem Biol Lett. 2024;10(2):532.

- Abu-Shahba N, Hegazy E, Khan FM, Elhefnawi M. In silico analysis of MicroRNA expression data in liver cancer. Cancer Inform. 2023;22:11769351231171743. doi: 10.1177/11769351231171743

» https://doi.org/10.1177/11769351231171743

- Ilikci-Sagkan R, Fatma Akin D, Liman R, Muddassir Ali M. In silico analysis of DEL-1 and inflammation-related genes in lung squamous cell carcinoma. Immunobiology. 2024;229(5):152838. doi: 10.1016/j.imbio.2024.152838

» https://doi.org/10.1016/j.imbio.2024.152838

- Srivastava P, Yadav VK, Chang TH, Su EC, Lawal B, Wu AT, et al. In-silico analysis of TMEM2 as a pancreatic adenocarcinoma and cancer-associated fibroblast biomarker, and functional characterization of NSC777201, for targeted drug development. Am J Cancer Res. 2024;14(6):3010-35. doi:10.62347/CHXD6134

» https://doi.org/10.62347/CHXD6134

- Dohlman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, Iliev ID, et al. The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe. 2021;29(2):281-98.e5. doi:10.1016/j.chom.2020.12.001

» https://doi.org/10.1016/j.chom.2020.12.001

- Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18-27. doi:10.1016/j.neo.2022.01.001

» https://doi.org/10.1016/j.neo.2022.01.001

- Inamura K. Oral-gut Microbiome crosstalk in cancer. Cancers (Basel). 2023;15(13):3396. doi: 10.3390/cancers15133396

» https://doi.org/10.3390/cancers15133396

Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, et al. Oral-gut microbiome axis in gastrointestinal disease and cancer. Cancers (Basel). 2021;13(9):2124. doi: 10.3390/cancers13092124

» https://doi.org/10.3390/cancers13092124

- Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, et al. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther. 2024;9(1):15. doi: 10.1038/s41392-023-01693-0

» https://doi.org/10.1038/s41392-023-01693-0

- Khan AA, Sirsat AT, Singh H, Cash P. Microbiota and cancer: current understanding and mechanistic implications. Clin Transl Oncol. 2022;24(2):193-202. doi: 10.1007/s12094-021-02690-x

» https://doi.org/10.1007/s12094-021-02690-x

- Li Q. Bacterial infection and microbiota in carcinogenesis and tumor development. Front Cell Infect Microbiol. 2023;13:1294082. doi: 10.3389/fcimb.2023.1294082

» https://doi.org/10.3389/fcimb.2023.1294082

- Ji H, Jiang Z, Wei C, Ma Y, Zhao J, Wang F, et al. Intratumoural microbiota: from theory to clinical application. Cell Commun Signal. 2023;21(1):164. doi:10.1186/s12964-023-01134-z

» https://doi.org/10.1186/s12964-023-01134-z

- Qin Y, Li Z, Liu T, Zhao B, Wang D, Tang D. Prevotella intermedia boosts OSCC progression through ISG15 upregulation: a new target for intervention. J Cancer Res Clin Oncol. 2024;150:206. doi: 10.1007/s00432-024-05730-5

» https://doi.org/10.1007/s00432-024-05730-5

- Lax A. The Pasteurella multocida toxin: a new paradigm for the link between bacterial infection and cancer. Curr Top Microbiol Immunol. 2012;361:131-44. doi: 10.1007/82_2012_236

» https://doi.org/10.1007/82_2012_236

- Singh S, Singh AK. Porphyromonas gingivalis in oral squamous cell carcinoma: a review. Microbes Infect. 2022;24(3):104925. doi:10.1016/j.micinf.2021.104925

- Oliva M, Schneeberger PHH, Rey V, Cho M, Taylor R, Hansen AR, et al. Transitions in oral and gut microbiome of HPV+ oropharyngeal squamous cell carcinoma following definitive chemoradiotherapy (ROMA LA-OPSCC study). Br J Cancer. 2021;124(9):1543-51. doi: 10.1038/s41416-020-01253-1

» https://doi.org/10.1038/s41416-020-01253-1

- Mäkinen AI, Pappalardo VY, Buijs MJ, Brandt BW, Mäkitie AA, Meurman JH, et al. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment. Microbiome. 2023;11(1):171. doi: 10.1186/s40168-023-01613-y

» https://doi.org/10.1186/s40168-023-01613-y

- Dou Y, Ma C, Wang K, Liu S, Sun J, Tan W, et al. Dysbiotic tumor microbiota associates with head and neck squamous cell carcinoma outcomes. Oral Oncol. 2022;124:105657. doi: 10.1016/j.oraloncology.2021.105657

» https://doi.org/10.1016/j.oraloncology.2021.105657

- Yang K, Wang Y, Zhang S, Zhang D, Hu L, Zhao T, et al. Oral microbiota analysis of tissue pairs and saliva samples from patients with oral squamous cell carcinoma: a pilot study. Front Microbiol. 2021;12:719601. doi: 10.3389/fmicb.2021.719601

» https://doi.org/10.3389/fmicb.2021.719601

- Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA, Salama A, et al. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci. 2018;10(4):32. doi: 10.1038/s41368-018-0037-7

» https://doi.org/10.1038/s41368-018-0037-7

- Yang CY, Yeh YM, Yu HY, Chin CY, Hsu CW, Liu H, et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol. 2018;9:862. doi: 10.3389/fmicb.2018.00862

» https://doi.org/10.3389/fmicb.2018.00862

- Lim Y, Fukuma N, Totsika M, Kenny L, Morrison M, Punyadeera C. The performance of an oral microbiome biomarker panel in predicting oral cavity and oropharyngeal cancers. Front Cell Infect Microbiol. 2018;8:267. doi: 10.3389/fcimb.2018.00267

» https://doi.org/10.3389/fcimb.2018.00267

- Zhao H, Chu M, Huang Z, Yang X, Ran S, Hu B, et al. Variations in oral microbiota associated with oral cancer. Sci Rep. 2017;7(1):11773. doi: 10.1038/s41598-017-11779-9

» https://doi.org/10.1038/s41598-017-11779-9

- Lee WH, Chen HM, Yang SF, Liang C, Peng CY, Lin FM, et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci Rep. 2017;7(1):16540. doi: 10.1038/s41598-017-16418-x

» https://doi.org/10.1038/s41598-017-16418-x

- Al-Hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T, Idris AM, et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep. 2017;7(1):1834. doi: 10.1038/s41598-017-02079-3

» https://doi.org/10.1038/s41598-017-02079-3

- Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, Rodríguez-Hilario A, González H, Bondy J, et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget. 2016;7(32):51320-34. doi: 10.18632/oncotarget.9710

» https://doi.org/10.18632/oncotarget.9710

- Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz EL, et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS One. 2014;9(6):e98741. doi: 10.1371/journal.pone.0098741

» https://doi.org/10.1371/journal.pone.0098741

- Pavlova SI, Jin L, Gasparovich SR, Tao L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci. Microbiology (Reading). 2013;159(Pt 7):1437-46. doi: 10.1099/mic.0.066258-0

» https://doi.org/10.1099/mic.0.066258-0

- Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 2012;12:144. doi: 10.1186/1471-2180-12-144

» https://doi.org/10.1186/1471-2180-12-144

- Katz J, Onate MD, Pauley KM, Bhattacharyya I, Cha S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int J Oral Sci. 2011;3(4):209-15. doi: 10.4248/IJOS11075

» https://doi.org/10.4248/IJOS11075

- Meurman JH, Uittamo J. Oral micro-organisms in the etiology of cancer. Acta Odontol Scand. 2008;66(6):321-6. doi: 10.1080/00016350802446527

» https://doi.org/10.1080/00016350802446527

- Sasaki M, Yamaura C, Ohara-Nemoto Y, Tajika S, Kodama Y, Ohya T, et al. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis. 2005;11(3):151-6. doi: 10.1111/j.1601-0825.2005.01051.x

» https://doi.org/10.1111/j.1601-0825.2005.01051.x

- Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 2005;3:27. doi: 10.1186/1479-5876-3-27

» https://doi.org/10.1186/1479-5876-3-27

- Nagy KN, Sonkodi I, Szöke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncol. 1998;34(4):304-8.

- Pongen YL, Thirumurugan D, Ramasubburayan R, Prakash S. Harnessing actinobacteria potential for cancer prevention and treatment. MicrobPathog. 2023;183:106324. doi: 10.1016/j.micpath.2023.106324

» https://doi.org/10.1016/j.micpath.2023.106324

- Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582-8. doi: 10.1136/gutjnl-2011-300784

» https://doi.org/10.1136/gutjnl-2011-300784

- Karpinski TM. Role of oral microbiota in cancer development. Microorganisms. 2019;7(1):20. doi: 10.3390/microorganisms7010020

» https://doi.org/10.3390/microorganisms7010020

- Muto M, Hitomi Y, Ohtsu A, Shimada H, Kashiwase Y, Sasaki H, et al. Acetaldehyde production by non-pathogenic Neisseria i n human oral microflora: implications for carcinogenesis in upper aerodigestive tract. Int J Cancer. 2000;88(3):342-50.

- Jebali A, Dumaz N. The role of RICTOR downstream of receptor tyrosine kinase in cancers. Mol Cancer. 2018;17(1):39. doi: 10.1186/s12943-018-0794-0

» https://doi.org/10.1186/s12943-018-0794-0

- Gkountakos A, Pilotto S, Mafficini A, Vicentini C, Simbolo M, Milella M, et al. Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex. Carcinogenesis. 2018;39(8):971-80. doi: 10.1093/carcin/bgy086

» https://doi.org/10.1093/carcin/bgy086

- Kim ST, Kim SY, Klempner SJ, Yoon J, Kim N, Ahn S, et al. Rapamycin-insensitive companion of mTOR (RICTOR) amplification defines a subset of advanced gastric cancer and is sensitive to AZD2014-mediated mTORC1/2 inhibition. Ann Oncol. 2017;28(3):547-54. doi: 10.1093/annonc/mdw669

» https://doi.org/10.1093/annonc/mdw669

- Zhang J, Zhou J, He Z, Li H. Bacteroides and NAFLD: pathophysiology and therapy. Front Microbiol. 2024;15:1288856. doi: 10.3389/fmicb.2024.1288856

» https://doi.org/10.3389/fmicb.2024.1288856

- Garciaz S, N'guyen Dasi L, Finetti P, Chevalier C, Vernerey J, Poplineau M, et al. Epigenetic down-regulation of the HIST1 locus predicts better prognosis in acute myeloid leukemia with NPM1 mutation. Clin Epigenetics. 2019;11(1):141. doi: 10.1186/s13148-019-0738-6

» https://doi.org/10.1186/s13148-019-0738-6

- Wan YCE, Chan KM. Histone H2B mutations in cancer. Biomedicines. 2021;9(6):694. doi: 10.3390/biomedicines9060694

» https://doi.org/10.3390/biomedicines9060694

- Zhao M, Dai R. HIST3H2A is a potential biomarker for pancreatic cancer: A study based on TCGA data. Medicine (Baltimore). 2021;100(46):e27598. doi:10.1097/MD.0000000000027598

» https://doi.org/10.1097/MD.0000000000027598

- Baldan F, Mio C, Allegri L, Conzatti K, Toffoletto B, Puppin C, et al. Identification of tumorigenesis-related mRNAs associated with RNA-binding protein HuR in thyroid cancer cells. Oncotarget. 2016;7(39):63388-407. doi:10.18632/oncotarget.11255

» https://doi.org/10.18632/oncotarget.11255

- Tian J, Liang X, Wang D, Tian J, Liang H, Lei T, et al. TBC1D2 promotes ovarian cancer metastasis via inducing E-cadherin degradation. Front Oncol. 2022;12:766077. doi: 10.3389/fonc.2022.766077

» https://doi.org/10.3389/fonc.2022.766077

- Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol. 2020;9:476. doi: 10.3389/fcimb.2019.00476

» https://doi.org/10.3389/fcimb.2019.00476

- Li Z, Chen G, Wang P, Sun M, Zhao J, Li A, et al. Alterations of the oral microbiota profiles in chinese patient with oral cancer. Front Cell Infect Microbiol. 2021;11:780067. doi: 10.3389/fcimb.2021.780067

» https://doi.org/10.3389/fcimb.2021.780067

- Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Wlodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol. 2022;12:965231. doi: 10.3389/fonc.2022.965231

» https://doi.org/10.3389/fonc.2022.965231

- Arunkumar G, Deva Magendhra Rao AK, Manikandan M, Prasanna Srinivasa Rao H, Subbiah S, Ilangovan R, et al. Dysregulation of miR-200 family microRNAs and epithelial-mesenchymal transition markers in oral squamous cell carcinoma. Oncol Lett. 2018;15(1):649-57. doi: 10.3892/ol.2017.7296

» https://doi.org/10.3892/ol.2017.7296

- Sami A, Elimairi I, Stanton C, Ross RP, Ryan CA. The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci. 2020;21(21):8061. doi:10.3390/ijms21218061

» https://doi.org/doi:10.3390/ijms21218061

- Amer A, Galvin S, Healy CM, Moran GP. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for F usobacterium, Leptotrichia, Campylobacter, and Rothia species. Front Microbiol. 2017;8:2391. doi:10.3389/fmicb.2017.02391

» https://doi.org/10.3389/fmicb.2017.02391

- Amer A, Whelan A, Al-Hebshi NN, Healy CM, Moran GP. Acetaldehyde production by Rothia mucilaginosa isolates from patients with oral leukoplakia. J Oral Microbiol. 2020;12(1):1743066. doi: 10.1080/20002297.2020.1743066

» https://doi.org/10.1080/20002297.2020.1743066

- Hernandez BY, Zhu X, Goodman MT, Gatewood R, Mendiola P, Quinata K, et al. Betel nut chewing, oral premalignant lesions, and the oral microbiome. PLoS One. 2017;12(2):e0172196. doi: 10.1371/journal.pone.0172196

» https://doi.org/10.1371/journal.pone.0172196

- Pietrobon G, Tagliabue M, Stringa LM, De Berardinis R, Chu F, Zocchi J, et al. Leukoplakia in the oral cavity and oral microbiota: a comprehensive review. Cancers (Basel). 2021;13(17):4439. doi: 10.3390/cancers13174439

» https://doi.org/10.3390/cancers13174439

- Kavitha L, Vijayashree Priyadharsini J, Kattula D, Rao UKM, Balaji Srikanth R, Kuzhalmozhi M, et al. Expression of CD44 in head and neck squamous cell carcinoma-an in-silico study. Glob Med Genet. 2023;10(3):221-8. doi: 10.1055/s-0043-1772459

» https://doi.org/10.1055/s-0043-1772459

Downloads

Published

2025-02-03

Issue

Section

Original Articles

How to Cite

Kavitha, L., Kuzhalmozhi, M., Vijayashree Priyadharsini, J., Arun Kumar, A., Umadevi, K. M. R., & Ranganathan, K. (2025). Microbial signatures in head and neck squamous cell carcinoma: an in silico study. Journal of Applied Oral Science, 33, e20240305. https://doi.org/10.1590/