Study of the role of transmembrane emp24 domain-containing protein 2 in oral squamous cell carcinoma
DOI:
https://doi.org/10.1590/Keywords:
Oral squamous cell carcinoma, TMED2, ARF1, ERKAbstract
Objective This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC). Methodology A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot. Finally, the effects of TMED2 knockdown and overexpression on the expression levels of TMED2, ADP-ribosylation factor 1, extracellular signal-regulated kinase ½, and phospho-extracellular signal-regulated kinase ½ proteins were examined in cells using the Western blot. Results The GEPIA2 database showed that OSCC tissues expressed more TMED2 than normal tissues. At the cellular level, TMED2 expression significantly increased in SCC-4, HSC-3, and CAL-27 cells than in human normal oral keratinocyte cells. TMED2 knockdown reduced cell proliferation, increased the apoptosis rate in SCC-4 cells, and led to a higher proportion of cells in the G0/G1 phase and a lower proportion in the S phase. Conclusion TMED2 may promote OSCC cell proliferation and inhibit apoptosis, potentially by activation of the ADP-ribosylation factor 1/ extracellular signal-regulated kinase ½ signaling pathway.
Downloads
References
- Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, et al. Comprehensive insights into oral squamous cell carcinoma: diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract. 2024;261:155489. doi: 10.1016/j.prp.2024.155489
» https://doi.org/10.1016/j.prp.2024.155489
- Fatima J, Fatima E, Mehmood F, Ishtiaq I, Khan MA, Khurshid HM, et al. Comprehensive analysis of oral squamous cell carcinomas: clinical, epidemiological, and histopathological insights with a focus on prognostic factors and survival time. Cureus. 2024;16(2):e54394. doi: 10.7759/cureus.54394
» https://doi.org/10.7759/cureus.54394
- Roi A, Roi CI, Negru?iu ML, Rivi? M, Sinescu C, Rusu LC. The challenges of OSCC diagnosis: salivary cytokines as potential biomarkers. J Clin Med. 2020;9(9):2866. doi: 10.3390/jcm9092866
» https://doi.org/10.3390/jcm9092866
- Tirelli G, Zanelli E, Polesel J, Gardenal N, Ramella V, Mineo C, et al. Improvement in survival rates and quality of life among patients surgically treated for squamous cell carcinoma of the oral cavity. J Maxillofac Oral Surg. 2024:1-10. doi: 10.1007/s12663-024-02289-z
» https://doi.org/10.1007/s12663-024-02289-z
- Edwards ZC, Trotter EW, Torres-Ayuso P, Chapman P, Wood HM, Nyswaner K, et al. Survival of head and neck cancer cells relies upon LZK kinase-mediated stabilization of mutant p53. Cancer Res. 2017;77(18):4961-72. doi: 10.1158/0008-5472.CAN-17-0267
» https://doi.org/10.1158/0008-5472.CAN-17-0267
- Song X, Xia R, Li J, Long Z, Ren H, Chen W, et al. Common and complex Notch1 mutations in Chinese oral squamous cell carcinoma. Clin ancer Res. 2014;20(3):701-10. doi: 10.1158/1078-0432.CCR-13-1050.
» https://doi.org/10.1158/1078-0432.CCR-13-1050
- Tamura T, Ichikawa T, Nakahata S, Kondo Y, Tagawa Y, Yamamoto K, et al. Loss of NDRG2 expression confers oral squamous cell carcinoma with enhanced metastatic potential. Cancer Res. 2017;77(9):2363-74. doi: 10.1158/0008-5472.CAN-16-2114
» https://doi.org/10.1158/0008-5472.CAN-16-2114
- Sun MS, Zhang J, Jiang LQ, Pan YX, Tan JY, Yu F, et al. TMED2 potentiates cellular ifn responses to DNA viruses by reinforcing mita dimerization and facilitating its trafficking. Cell reports. 2018;25(11):3086-98.e3. doi: 10.1016/j.celrep.2018.11.048
» https://doi.org/10.1016/j.celrep.2018.11.048
- Shi-Peng G, Chun-Lin C, Huan W, Fan-Liang M, Yong-Ning C, Ya-Di Z, et al. TMED2 promotes epithelial ovarian cancer growth. Oncotarget. 2017;8(55):94151-65. doi: 10.18632/oncotarget.21593
» https://doi.org/10.18632/oncotarget.21593
- Ge X, Jiang W, Jiang Y, Lv X, Liu X, Wang X. Expression and importance of TMED2 in multiple myeloma cells. Cancer Manag Res. 2020;12:12895-903. doi: 10.2147/CMAR.S278570
» https://doi.org/10.2147/CMAR.S278570
- Jackson CL. Activators and effectors of the small G protein Arf1 in regulation of golgi dynamics during the cell division cycle. Front Cell Dev Biol. 2018;6:29. doi: 10.3389/fcell.2018.00029
» https://doi.org/10.3389/fcell.2018.00029
- Luchsinger C, Aguilar M, Burgos PV, Ehrenfeld P, Mardones GA. Functional disruption of the Golgi apparatus protein ARF1 sensitizes MDA-MB-231 breast cancer cells to the antitumor drugs Actinomycin D and Vinblastine through ERK and AKT signaling. PloS one. 2018;13(4):e0195401. doi: 10.1371/journal.pone.0195401
» https://doi.org/10.1371/journal.pone.0195401
- He L, Gao L, Shay C, Lang L, Lv F, Teng Y. Histone deacetylase inhibitors suppress aggressiveness of head and neck squamous cell carcinoma via histone acetylation-independent blockade of the EGFR-Arf1 axis. J Exp Clin Cancer Res. 2019;38(1):84. doi: 10.1186/s13046-019-1080-8
» https://doi.org/10.1186/s13046-019-1080-8
- Xu X, Wang Q, He Y, Ding L, Zhong F, Ou Y, et al. ADP-ribosylation factor 1 (ARF1) takes part in cell proliferation and cell adhesion-mediated drug resistance (CAM-DR). Ann YHematol. 2017;96(5):847-58. doi: 10.1007/s00277-017-2949-2
» https://doi.org/10.1007/s00277-017-2949-2
- Hu HF, Xu WW, Li YJ, He Y, Zhang WX, Liao L. Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission. Theranostics. 2021;11(4):1828-44. doi: 10.7150/thno.48698
» https://doi.org/10.7150/thno.48698
- Lang L, Shay C, Zhao X, Teng Y. Combined targeting of Arf1 and Ras potentiates anticancer activity for prostate cancer therapeutics. J Exp Clin Cancer Res. 2017 Aug 23;36(1):112. doi: 10.1186/s13046-017-0583-4
» https://doi.org/10.1186/s13046-017-0583-4
- Han J, Zhang M, Froese S, Dai FF, Robitaille M, Bhattacharjee A, et al. The identification of novel protein-protein interactions in liver that affect glucagon receptor activity. PloS one. 2015;10(6):e0129226. doi: 10.1371/journal.pone.0129226
» https://doi.org/10.1371/journal.pone.0129226
- Mishra S, Bernal C, Silvano M, Anand S, Ruiz IA. The protein secretion modulator TMED9 drives CNIH4/TGFa/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases. Oncogene. 2019;38(29):5817-37. doi: 10.1038/s41388-019-0845-z
» https://doi.org/10.1038/s41388-019-0845-z
- Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556-w60. doi: 10.1093/nar/gkz430
» https://doi.org/10.1093/nar/gkz430
- Zhang J, Mao W, Dai Y, Qian C, Dong Y, Chen Z, et al. Voltage-gated sodium channel Nav1.5 promotes proliferation, migration and invasion of oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai). 2019;51(6):562-70. doi: 10.1093/abbs/gmz044
» https://doi.org/10.1093/abbs/gmz044
- Liu XQ, Yao Y, Mu JW, Yang FY. Semaphorin 4A restricts tumor progression by inhibiting angiogenesis of oral squamous cell carcinoma cells. Tissue Cell. 2021;69:101485. doi: 10.1016/j.tice.2021.101485
» https://doi.org/10.1016/j.tice.2021.101485
- Almangush A, Mäkitie AA, Triantafyllou A, de Bree R, Strojan P, Rinaldo A, et al. Staging and grading of oral squamous cell carcinoma: an update. Oral Oncol. 2020;107:104799. doi: 10.1016/j.oraloncology.2020.104799
» https://doi.org/10.1016/j.oraloncology.2020.104799
- Feng J, Li Y, Wen N. Characterization of cancer stem cell characteristics and development of a prognostic stemness index cell-related signature in Oral Squamous Cell Carcinoma. Dis Markers. 2021;2021:1571421. doi: 10.1155/2021/1571421
» https://doi.org/10.1155/2021/1571421
- Vainio P, Mpindi JP, Kohonen P, Fey V, Mirtti T, Alanen KA, et al. High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer. PloS one. 2012;7(6):e39801. doi: 10.1371/journal.pone.0039801
» https://doi.org/10.1371/journal.pone.0039801
- Zheng H, Yang Y, Han J, Jiang WH, Chen C, Wang MC, et al. TMED3 promotes hepatocellular carcinoma progression via IL-11/STAT3 signaling. Sci Rep. 2016;6:37070. doi: 10.1038/srep37070
» https://doi.org/10.1038/srep37070
- Gao W, Zhang ZW, Wang HY, Li XD, Peng WT, Guan HY, et al. TMED2/9/10 Serve as biomarkers for poor prognosis in head and neck squamous carcinoma. Front Genet.. 2022;13:895281. doi: 10.3389/fgene.2022.895281
» https://doi.org/10.3389/fgene.2022.895281
- Gu G, Chen Y, Duan C, Zhou L, Chen C, Chen J, et al. Overexpression of ARF1 is associated with cell proliferation and migration through PI3K signal pathway in ovarian cancer. Oncol Rep. 2017;37(3):1511-20. doi: 10.3892/or.2017.5388
» https://doi.org/10.3892/or.2017.5388
- Nath D, Li X, Mondragon C, Post D, Chen M, White JR, et al. Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell communication and signaling: CCS. 2019;17(1):120. Cell Commun Signal. 2019;17(1):120. doi: 10.1186/s12964-019-0410-y
» https://doi.org/10.1186/s12964-019-0410-y
- Maik-Rachline G, Hacohen-Lev-Ran A, Seger R. Nuclear ERK: mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 2019;20(5):1194. doi: 10.3390/ijms20051194
» https://doi.org/10.3390/ijms20051194
- Haines E, Schlienger S, Claing A. The small GTPase ADP-Ribosylation Factor 1 mediates the sensitivity of triple negative breast cancer cells to EGFR tyrosine kinase inhibitors. Cancer Biol Ther. 2015;16(10):1535-47. doi: 10.1080/15384047.2015.1071737
» https://doi.org/10.1080/15384047.2015.1071737
- Spano D, Colanzi A. Golgi Complex: A signaling hub in cancer. Cells. 2022;11(13):1990. doi: 10.3390/cells11131990

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zhao- Wei Ruan, Xue-Feng Jiao, Gao-Tian Xiao, Jing-Ling Chen, Jun Li, Shu-Ying Lv

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.