Osteoclastogenesis markers in craniofacial bone defects after demineralized dentin material membrane implantation as guided bone regeneration

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Guided bone regeneration, TNF-α;, RANKL, Osteoclastogenesis, Demineralized dentin material membrane

Abstract

Guided bone regeneration (GBR) is an alternative treatment for craniofacial bone defects reconstruction through membrane barrier adaptation, such as demineralized dentin material membrane (DDMM). DDMM is used as a substitute for GBR material, which aligns with Green Economy principles, it has a good biological osteoinductive and osteoconductive effects, and its structure resembles bones. The balance of bone remodeling when experiencing craniofacial defects will be altered and allow changes to resorption activity, so the mechanisms of osteoclastogenesis and bone resorption are vital. Objective: this article aims to analyze the expression of TNF-α, RANKL, and osteoclast cells count after application of DDMM as GBR in mandibular bone defects. Methodology: this is an experimental study with a post-test only control group design, which began with the randomization of 120 rats into five groups: K(−), without membrane implantation; K(+), PPCM; P1, DDMM; P2, DDMM + bone graft; P3, PPCM + bone graft. The expression of TNF-α, RANKL, and osteoclast cells count were observed, followed by analysis using a one-way ANOVA and post hoc Tukey HSD comparison test. Results: there were significant differences in the expression of TNF-α, RANKL, and osteoclast cells count in all study groups (p=0.000). TNF-α showed a decreasing difference with the highest expression in the K(−) group on day 3 of 12.00±2.16. RANKL expression increased on day 14 and decreased on day 21 in all groups. The osteoclast cells count generally showed a critical period with the highest increase in the K(−) group on day 14 of 73.00±0.00. Conclusion: DDMM has the potential to be a superior membrane substitute compared to PPCM as GBR in alternative treatment for craniofacial bone defects reconstruction.

Downloads

References

- Dewey MJ, Milner DJ, Weisgerber D, Flanagan CL, Rubessa M, Lotti S, et al. Repair of critical-size porcine craniofacial bone defects using a collagen-polycaprolactone composite biomaterial. Biofabrication. 2021;14(1):10.1088/1758-5090/ac30d5. doi: 10.1101/2021.04.19.440506

» https://doi.org/10.1088/1758-5090/ac30d5» https://doi.org/10.1101/2021.04.19.440506

- Aghali A. Craniofacial bone tissue engineering: current approaches and potential therapy. Cells. 2021;10(11):2993. doi: 10.3390/cells10112993

» https://doi.org/10.3390/cells10112993

- Novais A, Chatzopoulou E, Chaussain C, Gorin C. The potential of FGF-2 in craniofacial bone tissue engineering: a review. Cells. 2021;10(4):932. doi: 10.3390/cells10040932

» https://doi.org/10.3390/cells10040932

- Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, et al. The concept of scaffold-guided bone regeneration for the treatment of long bone defects: current clinical application and future perspective. J Funct Biomater. 2023;14(7):341. doi: 10.3390/jfb14070341

» https://doi.org/10.3390/jfb14070341

- Furuhata M, Takayama T, Yamamoto T, Ozawa Y, Senoo M, Ozaki M, et al. Real-time assessment of guided bone regeneration in critical size mandibular bone defects in rats using collagen membranes with adjunct fibroblast growth factor-2. J Dent Sci. 2021;16(4):1170-81. doi: 10.1016/j.jds.2021.03.008

» https://doi.org/10.1016/j.jds.2021.03.008

- Soesilawati P, Pradhitta RA, Alwino M, Firdauzy B, Hayaty N, Kasim A. The role of demineralized dentin material membrane as guided bone regeneration. Mal J Med Health Sci. 2021;17(Supp 6):117-123.

- Mulyawan I, Rizqiawan A, Soesilowati P, Buntoro Kamadjaja D. Expression of TNF-α and MMP-13 following subcutaneous implantation of demineralized freeze dried bovine cortical bone membrane in rat's dorsum. J Int Dent Med Res. 2021;14(1):74-8.

- Soesilawati P, Tantiana, Zahra A. Anti immunogenicity evaluation of bovine demineralized dentine membrane material. Mal J Med Health Sci. 2021;17(Supp 2):103-5.

- Um IW, Kim YK, Mitsugi M. Demineralized dentin matrix scaffolds for alveolar bone engineering. J Indian Prosthodont Soc. 2017;17(2):120-7. doi: 10.4103/jips.jips_62_17

» https://doi.org/10.4103/jips.jips_62_17

- Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo Clin Dev Immunol. 2013;2013:181849. doi: 10.1155/2013/181849

» https://doi.org/10.1155/2013/181849

- Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 2013;92(10):860-7. doi: 10.1177/0022034513500306

» https://doi.org/10.1177/0022034513500306

- Chaparro O, Linero I. Regenerative medicine: a new paradigm in bone regeneration. In: Zorzi AR, Miranda JB, editors. Advanced techniques in bone regeneration. London: InTechOpen; 2016. p. 253-74. doi: 10.5772/62523

» https://doi.org/10.5772/62523

- Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, et al. Expression of osteoprotegerin, receptor activator of NF-κB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res. 2001;16(6):1004-14. doi: 10.1359/jbmr.2001.16.6.1004

» https://doi.org/10.1359/jbmr.2001.16.6.1004

- Ritsu M, Kawakami K, Kanno E, Tanno H, Ishii K, Imai Y, et al. Critical role of tumor necrosis factor-α in the early process of wound healing in skin. J Dermatol Dermatol Surg. 2017;21(1):14-19. doi: 10.1016/j.jdds.2016.09.001

» https://doi.org/10.1016/j.jdds.2016.09.001

- Soesilawati P, Rizqiawan A, Roestamadji RI, Arrosyad AR, Firdauzy MA, Kasim NH. In vitro cell proliferation assay of demineralized dentin material membrane in osteoblastic mc3t3-e1 cells. Clin Cosmet Investig Dent. 2021;13:443-9. doi: 10.2147/CCIDE.S313184

» https://doi.org/10.2147/CCIDE.S313184

- du Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The arrive guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e300410. doi: 10.1371/journal.pbio.3000410

» https://doi.org/10.1371/journal.pbio.3000410

- Jackson P, Blythe D. Immunohistochemical techniques. In: Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. 6th ed. [place unknown]: Churchill Livingstone; 2008. doi: 10.1016/B978-0-443-10279-0.50028-2

» https://doi.org/10.1016/B978-0-443-10279-0.50028-2

- Thomaidis V, Kazakos K, Lyras DN, Dimitrakopoulos I, Lazaridis N, Karakasis D, et al. Comparative study of 5 different membranes for guided bone regeneration of rabbit mandibular defects beyond critical size. Med Sci Monit. 2008;14(4):BR67-73.

- Yuliati Y, Soesilawati P, Nastiti AP, Firdauzy MA, Alias A, Haque Z. Guided bone regeneration to improve osseointegration in dental implant. Mal J Med Health Sci. 2021;17(Supp 6):127-32.

- Farzad M, Mohammadi M. Guided bone regeneration: a literature review. J Oral Health Oral Epidemiol. 2012;1(1):3-18.

- Zhao B. Does TNF promote or restrain osteoclastogenesis and inflammatory bone resorption? Crit Rev Immunol. 2018;38(4):253-61. doi: 10.1615/CritRevImmunol.2018025874

» https://doi.org/10.1615/CritRevImmunol.2018025874

- Luo G, Li F, Li X, Wang ZG, Zhang B. TNF-α and RANKL promote osteoclastogenesis by upregulating RANK via the NF-κB pathway. Mol Med Rep. 2018;17(5):6605-11. doi: 10.3892/mmr.2018.8698

» https://doi.org/10.3892/mmr.2018.8698

- Lampiasi N, Russo R, Zito F. The alternative faces of macrophage generate osteoclasts. Biomed Res Int. 2016;2016:9089610. doi: 10.1155/2016/9089610

» https://doi.org/10.1155/2016/9089610

- Park TH, Ku JK. Clinical outcomes of micro-sized autogenous demineralized dentin matrix for periodontal bone defects: a case report. J Dent Implant Res. 2023;42(2):24-29. doi: 10.54527/jdir.2023.42.2.24

» https://doi.org/10.54527/jdir.2023.42.2.24

- Zhou WH, Li YF. A bi-layered asymmetric membrane loaded with demineralized dentin matrix for guided bone regeneration. J Mech Behav Biomed Mater. 2024;149:106230. doi: 10.1016/j.jmbbm.2023.106230

» https://doi.org/10.1016/j.jmbbm.2023.106230

- Yang JW, Park HJ, Yoo KH, Chung K, Jung S, Oh HK, et al. A comparison study between periosteum and resorbable collagen membrane on iliac block bone graft resorption in the rabbit calvarium. Head Face Med. 2014;10:15. doi: 10.1186/1746-160X-10-15

» https://doi.org/10.1186/1746-160X-10-15

- Kresnoadi U, Sari N, Laksono H. Socket preservation using a combination of propolis extract and bovine bone graft towards the expression of receptor activator of nuclear κB ligand and osteoprogerin. Folia Med (Plovdiv). 2023;65(5):737-43. doi: 10.3897/folmed.65.e95802

» https://doi.org/10.3897/folmed.65.e95802

- Kresnoadi U, Laksono V, Dahlan A. Expression and ratio of receptor activator of nuclear factor kappa-Β ligand and osteoprotegerin following application of Nigella sativa/bovine bone graft combination in post tooth extraction sockets. J Indian Prosthodont Soc. 2023;23(3):277-84. doi: 10.4103/jips.jips_198_23

» https://doi.org/10.4103/jips.jips_198_23

- Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, et al. Cellular biology of fracture healing. J Orthop Res. 2019;37(1):35-50. doi: 10.1002/jor.24170

» https://doi.org/10.1002/jor.24170

- Owen R, Reilly GC. In vitro models of bone remodelling and associated disorders. Front Bioeng Biotechnol. 2018;6:134. doi: 10.3389/fbioe.2018.00134

» https://doi.org/10.3389/fbioe.2018.00134

Downloads

Published

2025-01-10

Issue

Section

Original Articles

How to Cite

Mahendra, D. A., Yuliati, A., Razali, M., Kasim, N. H. A., Firdauzy, M. A. B., Roestamadji, R. I., & Soesilawati, P. (2025). Osteoclastogenesis markers in craniofacial bone defects after demineralized dentin material membrane implantation as guided bone regeneration. Journal of Applied Oral Science, 33, e20240254. https://doi.org/10.1590/