Evaluation of radiation therapy on grafted and non-grafted defects

an experimental rat model

Authors

  • Milena Suemi Irie Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil. https://orcid.org/0000-0002-2919-2910
  • Isabella Neme Ribeiro dos Reis Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, São Paulo, Brasil https://orcid.org/0000-0002-9249-4540
  • Luiz Gustavo Gonzáles Osuna Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil.
  • Guilherme José Pimentel Lopes de Oliveira Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil. https://orcid.org/0000-0001-8778-0115
  • Rubens Spin-Neto Aarhus University, Section for Oral Radiology, Department of Dentistry and Oral Health, Health, Aarhus, Denmark. https://orcid.org/0000-0002-9562-0610
  • Priscilla Barbosa Ferreira Soares Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil. https://orcid.org/0000-0002-4492-8957

DOI:

https://doi.org/10.1590/1678-7757-2024-0211

Keywords:

Radiation ionizing, Bone, Bone substitutes, X-ray microtomography, Collagen

Abstract

Objective  This study aimed to assess the effects of a single-dose radiation therapy (15 Gy) on grafted and non-grafted defects, bone microarchitecture, and collagen maturity.

Methodology  Bone defects were surgically created in rat femurs. The right femur defect was filled with blood clot (group “Clot”) and the left femur defect by deproteinized bovine bone mineral graft (group “Xenograft”). The animals were divided into two groups: without radiation therapy (nRTX) and with radiation therapy (RTX). Microtomographic (bone volume fraction, BV/TV; trabecular thickness, Tb.Th; trabecular number, Tb.N; trabecular separation, Tb.Sp), histological, and histomorphometric analyses were performed 14 days after the surgery. Two-way ANOVA with Tukey post hoc test was used to compare the groups (α=5%).

Results  Microtomographic analysis revealed that radiation therapy led to smaller BV/TV and Tb.N in both Clot and Xenograft groups. Regardless of radiation therapy, defects filled with xenografts showed a larger Tb.N. In contrast, the Clot group demonstrated increased BV/TV and Tb.Th. The histomorphometric results were consistent with those obtained by microtomography. Intermediately and densely packed collagen were predominant among the groups. Histological analysis revealed disorganized bone formation bridging the cortical borders of the lesions in the RTX group. The involvement of primary bone with graft particles was commonly observed in all xenograft groups, and radiation therapy did not affect the percentage of bone-graft contact.

Conclusion  Single-dose radiation therapy affected bone repair, resulting in a smaller amount of newly formed bone in both grafted and non-grafted defects.

Downloads

References

- Soares PB, Soares CJ, Limirio PH, Jesus RN, Dechichi P, Spin-Neto R, et al. Effect of ionizing radiation after-therapy interval on bone: histomorphometric and biomechanical characteristics. Clin Oral Investig. 2019;23(6):2785-93. doi: 10.1007/s00784-018-2724-3

» https://doi.org/10.1007/s00784-018-2724-3

- Zaidi M, Blair HC, Moonga BS, Abe E, Huang CL. Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics. J Bone Miner Res. 2003;18(4):599-609. doi: 10.1359/jbmr.2003.18.4.599

» https://doi.org/10.1359/jbmr.2003.18.4.599

- Limirio PH, Soares PB, Emi ET, Lopes CC, Rocha FS, Batista JD, et al. Ionizing radiation and bone quality: time-dependent effects. Radiat Oncol. 2019;14(1):15. doi: 10.1186/s13014-019-1219-y

» https://doi.org/10.1186/s13014-019-1219-y

- Wang TH, Liu CJ, Chao TF, Chen TJ, Hu YW. Risk factors for and the role of dental extractions in osteoradionecrosis of the jaws: a national-based cohort study. Head Neck. 2017;39(7):1313-21. doi: 10.1002/hed.24761

» https://doi.org/10.1002/hed.24761

- Di Carlo S, De Angelis F, Ciolfi A, Quarato A, Piccoli L, Pompa G, et al. Timing for implant placement in patients treated with radiotherapy of head and neck. Clin Ter. 2019;170(5):e345-51. doi: 10.7417/CT.2019.2153

» https://doi.org/10.7417/CT.2019.2153

- Ch'ng S, Skoracki RJ, Selber JC, Yu P, Martin JW, Hofstede TM, et al. Osseointegrated implant-based dental rehabilitation in head and neck reconstruction patients. Head Neck. 2016;38 Suppl 1:E321-7. doi: 10.1002/hed.23993

» https://doi.org/10.1002/hed.23993

- Alberga JM, Korfage A, Bonnema I, Witjes MJ, Vissink A, Raghoebar GM. Mandibular dental implant placement immediately after teeth removal in head and neck cancer patients. Support Care Cancer. 2020;28(12):5911-8. doi: 10.1007/s00520-020-05431-y

» https://doi.org/10.1007/s00520-020-05431-y

- Iocca O, Farcomeni A, Pardiñas Lopez S, Talib HS. Alveolar ridge preservation after tooth extraction: a Bayesian Network meta-analysis of grafting materials efficacy on prevention of bone height and width reduction. J Clin Periodontol. 2017;44(1):104-14. doi: 10.1111/jcpe.12633

» https://doi.org/10.1111/jcpe.12633

- Mendes EM, Irie MS, Rabelo GD, Borges JS, Dechichi P, Diniz RS, et al. Effects of ionizing radiation on woven bone: influence on the osteocyte lacunar network, collagen maturation, and microarchitecture. Clin Oral Investig. 2020;24(8):2763-71. doi: 10.1007/s00784-019-03138-x

» https://doi.org/10.1007/s00784-019-03138-x

- Korfage A, Schoen PJ, Raghoebar GM, Roodenburg JL, Vissink A, et al. Benefits of dental implants installed during ablative tumour surgery in oral cancer patients: a prospective 5-year clinical trial. Clin Oral Implants Res. 2010;21(9):971-9. doi: 10.1111/j.1600-0501.2010.01930.x

» https://doi.org/10.1111/j.1600-0501.2010.01930.x

- Borges JS, Costa VC, Irie MS, Rezende Barbosa GL, Spin-Neto R, Soares PB. Definition of the region of interest for the assessment of alveolar bone repair using micro-computed tomography. J Digit Imaging. 2023;36(1):356-64. doi: 10.1007/s10278-022-00693-w

» https://doi.org/10.1007/s10278-022-00693-w

- Irie MS, Rabelo GD, Spin-Neto R, Dechichi P, Borges JS, Soares PB. Use of micro-computed tomography for bone evaluation in dentistry. Braz Dent J. 2018;29(3):227-38. doi: 10.1590/0103-6440201801979

» https://doi.org/10.1590/0103-6440201801979

- Hartlev J, Erik Nørholt S, Spin-Neto R, Kraft D, Schou S, Isidor F. Histology of augmented autogenous bone covered by a platelet-rich fibrin membrane or deproteinized bovine bone mineral and a collagen membrane: a pilot randomized controlled trial. Clin Oral Implants Res. 2020;31(8):694-704. doi: 10.1111/clr.13605

» https://doi.org/10.1111/clr.13605

- Smith LR, Barton ER. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am J Physiol Cell Physiol. 2014;306(10):C889-98. doi: 10.1152/ajpcell.00383.201

» https://doi.org/10.1152/ajpcell.00383.201

- Pelker RR, Friedlaender GE. The Nicolas Andry Award-1995. Fracture healing. Radiation induced alterations. Clin Orthop Relat Res. 1997;(341):267-82.

- Arnold M, Stas P, Kummermehr J, Schultz-Hector S, Trott KR. Radiation-induced impairment of bone healing in the rat femur: effects of radiation dose, sequence and interval between surgery and irradiation. Radiother Oncol. 1998;48(3):259-65. doi: 10.1016/s0167-8140(98)00039-5

» https://doi.org/10.1016/s0167-8140(98)00039-5

- Allen RJ Jr, Nelson JA, Polanco TO, Shamsunder MG, Ganly I, Boyle J, et al. Short-term outcomes following virtual surgery-assisted immediate dental implant placement in free fibula flaps for oncologic mandibular reconstruction. Plast Reconstr Surg. 2020;146(6):768e-76e. doi: 10.1097/PRS.0000000000007352

» https://doi.org/10.1097/PRS.0000000000007352

- Schoen PJ, Reintsema H, Raghoebar GM, Vissink A, Roodenburg JL. The use of implant retained mandibular prostheses in the oral rehabilitation of head and neck cancer patients. A review and rationale for treatment planning. Oral Oncol. 2004;40(9):862-71. doi: 10.1016/j.oraloncology.2003.08.024

» https://doi.org/10.1016/j.oraloncology.2003.08.024

Urken ML, Buchbinder D, Costantino PD, Sinha U, Okay D, Lawson W, et al. Oromandibular reconstruction using microvascular composite flaps: report of 210 cases. Arch Otolaryngol Head Neck Surg. 1998;124(1):46-55. doi: 10.1001/archotol.124.1.46

» https://doi.org/10.1001/archotol.124.1.46

- Brogniez V, Nyssen-Behets C, Grégoire V, Reychler H, Lengelé B. Implant osseointegration in the irradiated mandible. A comparative study in dogs with a microradiographic and histologic assessment. Clin Oral Implants Res. 2002;13(3):234-42. doi: 10.1034/j.1600-0501.2002.130302.x

» https://doi.org/10.1034/j.1600-0501.2002.130302.x

- Weinlaender M, Beumer J 3rd, Kenney EB, Lekovic V, Holmes R, Moy PK, et al. Histomorphometric and fluorescence microscopic evaluation of interfacial bone healing around 3 different dental implants before and after radiation therapy. Int J Oral Maxillofac Implants. 2006;21(2):212-24.

- Schilling T, Müller M, Minne HW, Ziegler R. Influence of inflammation-mediated osteopenia on the regional acceleratory phenomenon and the systemic acceleratory phenomenon during healing of a bone defect in the rat. Calcif Tissue Int. 1998;63(2):160-6. doi: 10.1007/s00223990050

» https://doi.org/10.1007/s00223990050

- Matsumura S, Jikko A, Hiranuma H, Deguchi A, Fuchihata H. Effect of X-ray irradiation on proliferation and differentiation of osteoblast. Calcif Tissue Int. 1996;59(4):307-8. doi: 10.1007/s002239900129

» https://doi.org/10.1007/s002239900129

- Green DE, Rubin CT. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone. 2014;63:87-94. doi: 10.1016/j.bone.2014.02.018

» https://doi.org/10.1016/j.bone.2014.02.018

- Mitchell MJ, Logan PM. Radiation-induced changes in bone. Radiographics 1998;18(5):1125-36. doi: 10.1148/radiographics.18.5.9747611

» https://doi.org/10.1148/radiographics.18.5.9747611

- Yamasaki MC, Cavalcante Fontenele R, Nejaim Y, Freitas DQ. Radioprotective Effect of sodium selenite on mandible of irradiated rats. Braz Dent J. 2019;30(3):232-7. doi: 10.1590/0103-6440201902559

» https://doi.org/10.1590/0103-6440201902559

- Liu L, Bassano DA, Prasad SC, Hahn SS, Chung CT. The linear-quadratic model and fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(3):827-32. doi: 10.1016/s0360-3016(03)00634-5

» https://doi.org/10.1016/s0360-3016(03)00634-5

- Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants. 1999;14(6):835-40.

- MacNeill SR, Cobb CM, Rapley JW, Glaros AG, Spencer P. In vivo comparison of synthetic osseous graft materials. A preliminary study. J Clin Periodontol. 1999;26(4):239-45. doi: 10.1034/j.1600-051x.1999.260407.x

» https://doi.org/10.1034/j.1600-051x.1999.260407.x

- Pinholt EM, Kwon PH. The effect of therapeutic radiation on canine alveolar ridges augmented with hydroxylapatite. J Oral Maxillofac Surg. 1992;50(3):250-4. doi: 10.1016/0278-2391(92)90321-p

» https://doi.org/10.1016/0278-2391(92)90321-p

- Khateery S, Waite PD, Lemons JE. The influence of radiation therapy on subperiosteal hydroxyapatite implants in rabbits. J Oral Maxillofac Surg. 1991;49(7):730-4. doi: 10.1016/s0278-2391(10)80237-x

» https://doi.org/10.1016/s0278-2391(10)80237-x

- Kudo M, Matsui Y, Ohno K, Michi K. A histomorphometric study of the tissue reaction around hydroxyapatite implants irradiated after placement. J Oral Maxillofac Surg. 2001;59(3):293-300. discussion 301. doi: 10.1053/joms.2001.20998

» https://doi.org/10.1053/joms.2001.20998

- Malard O, Guicheux J, Bouler JM, et al. Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: A dog study. Bone 2005;36(2):323-30. doi: 10.1016/j.bone.2004.07.018

» https://doi.org/10.1016/j.bone.2004.07.018

- Oest ME, Gong B, Esmonde-White K, Mann KA, Zimmerman ND, Damron TA. Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia. Bone. 2016;86:91-7. doi: 10.1016/j.bone.2016.03.003

» https://doi.org/10.1016/j.bone.2016.03.003

- Mendoza-Azpur G, de la Fuente A, Chavez E, Valdivia E, Khouly I. Horizontal ridge augmentation with guided bone regeneration using particulate xenogenic bone substitutes with or without autogenous block grafts: a randomized controlled trial. Clin Implant Dent Relat Res. 2019;21(4):521-30. doi: 10.1111/cid.12740

» https://doi.org/10.1111/cid.12740

- Tapety FI, Amizuka N, Uoshima K, Nomura S, Maeda T. A histological evaluation of the involvement of Bio-Oss ® in osteoblastic differentiation and matrix synthesis. Clin Oral Implants Res. 2004;15(3):315-24. doi: 10.1111/j.1600-0501.2004.01012.x

» https://doi.org/10.1111/j.1600-0501.2004.01012.x

- Schiegnitz E, Al-Nawas B, Kämmerer PW, Grötz KA. Oral rehabilitation with dental implants in irradiated patients: a meta-analysis on implant survival. Clin Oral Investig. 2014;18(3):687-98. doi: 10.1007/s00784-013-1134-9

» https://doi.org/10.1007/s00784-013-1134-9

- In 't Veld M, Schulten EA, Leusink FK. Immediate dental implant placement and restoration in the edentulous mandible in head and neck cancer patients: a systematic review and meta-analysis. Curr Opin Otolaryngol Head Neck Surg. 2021;29(2):126-37. doi: 10.1097/MOO.0000000000000685

» https://doi.org/10.1097/MOO.0000000000000685

- Stenson KM, Balter JM, Campbell JH, Carroll WR. Effects of implantable biomaterials on radiation dosimetry. Head and Neck 1997;19(5):384-90. doi: 10.1002/(sici)1097-0347(199708)19:5<384::aid-hed4>3.0.co;2-w

» https://doi.org/10.1002/(sici)1097-0347(199708)19:5<384::aid-hed4>3.0.co;2-w

- Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195-214. doi: 10.1007/s00198-009-1066-z

» https://doi.org/10.1007/s00198-009-1066-z

- Jegoux F, Malard O, Goyenvalle E, Aguado E, Daculsi G. Radiation effects on bone healing and reconstruction: interpretation of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(2):173-84. doi: 10.1016/j.tripleo.2009.10.001

» https://doi.org/10.1016/j.tripleo.2009.10.001

- Suljevic O, Schwarze UY, Okutan B, Herber V, Lichtenegger H, Freudenthal-Siefkes JE, et al. Does early post-operative exercise influence bone healing kinetics? Preclinical evaluation of non-critical sized femur defect healing. Bone. 2023;176:116869. doi: 10.1016/j.bone.2023.116869

» https://doi.org/10.1016/j.bone.2023.116869

- Bourzac C, Bensidhoum M, Manassero M, Chappard C, Michoux N, Pallu S, et al. Preventive moderate continuous running-exercise conditioning improves the healing of non-critical size bone defects in male wistar rats: a pilot study using µCT. Life (Basel). 2020;10(12):308. doi: 10.3390/life10120308

» https://doi.org/10.3390/life10120308

Downloads

Published

— Updated on 2025-01-10

Issue

Section

Original Articles

How to Cite

Irie, M. S., Reis, I. N. R. dos, Osuna, L. G. G., Oliveira, G. J. P. L. de, Spin-Neto, R., & Soares, P. B. F. (2025). Evaluation of radiation therapy on grafted and non-grafted defects: an experimental rat model. Journal of Applied Oral Science, 32, e20240211. https://doi.org/10.1590/1678-7757-2024-0211