DNMT3A transcriptionally downregulated by KLF5 alleviates LPS-induced inflammatory response and promotes osteogenic differentiation in hPDLSCs
DOI:
https://doi.org/10.1590/Keywords:
Periodontitis, DNMT3A, KLF5, Inflammation, Osteogenic differentiationAbstract
Backgroud and objective: Periodontitis is an inflammatory disease typically characterized by the destruction of periodontal tissues and complicated etiology. DNA methyltransferase 3A (DNMT3A) has been implicated in possessing pro-inflammatory properties. This study sought to explore the role of DNMT3A in periodontitis and its relevant mechanism. Methodology: Lipopolysaccharide (LPS) was used to induce inflammation in human periodontal ligament stem cells (hPDLSCs). DNMT3A and KLF5 expressions were detected using RT-qPCR and western blot. The levels of inflammatory cytokines and inflammation-related proteins were detected using ELISA and western blot. NF-κB p65 expression was detected using immunofluorescence (IF) assay, while osteogenic differentiation was assessed using ALP assay and ARS staining. Western blot was used to measure the protein contents associated with osteogenic differentiation. DNMT3A activity was detected using luciferase report assay and chromatin immunoprecipitation (ChIP) was used to verify the interaction between KLF5 and DNMT3A. Results: DNMT3A expression increased in LPS-induced hPDLSCs. Silencing DNMT3A suppressed the LPS-induced inflammation in hPDLSCs, while promoting osteogenic differentiation. It was also found that transcriptional factor KLF5 could bind to DNMT3A promoters and regulate DNMT3A expression. Rescue experiments showed that KLF5 interference partially counteracted the inhibitory impacts of DNMT3A deficiency on inflammation and the promotive effects on osteogenic differentiation in LPS-induced hPDLSCs. Conclusion: DNMT3A, when transcriptionally downregulated by KLF5, could alleviate LPS-challenged inflammatory responses and facilitate osteogenic differentiation in hPDLSCs.
Downloads
References
- Slots J. Periodontitis: facts, fallacies and the future. Periodontology 2000. 2017;75:7-23. doi: 10.1111/prd.12221
» https://doi.org/10.1111/prd.12221
- Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. stem cells and development. 2019;28:974-85. doi: 10.1089/scd.2019.0031
» https://doi.org/10.1089/scd.2019.0031
- Mohebichamkhorami F, Fattahi R, Niknam Z, Aliashrafi M, Khakpour Naeimi S, et al. Periodontal ligament stem cells as a promising therapeutic target for neural damage. Stem Cell Res Ther. 2022;13(1):273. doi: 10.1186/s13287-022-02942-9
» https://doi.org/10.1186/s13287-022-02942-9
- Andrukhov O, Behm C, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: implication in disease and tissue regeneration. World journal of stem cells. 2019;11(9):604-17. doi: 10.4252/wjsc.v11.i9.604
» https://doi.org/10.4252/wjsc.v11.i9.604
- Cheng M, Zhou Q. Targeting EZH2 ameliorates the LPS-inhibited PDLSC osteogenesis via Wnt/ß-catenin pathway. Cells Tissues Organs. 2020;209(4-6):227-35. doi: 10.1159/000511702
» https://doi.org/10.1159/000511702
- Misawa MY, Silvério Ruiz KG, Nociti FH Jr, Albiero ML, Saito MT, Nóbrega Stipp R, et al. Periodontal ligament-derived mesenchymal stem cells modulate neutrophil responses via paracrine mechanisms. J Periodontol. 2019;90(7):747-55. doi: 10.1002/jper.18-0220
» https://doi.org/10.1002/jper.18-0220
- Lin L, Li S, Hu S, Yu W, Jiang B, Mao C,et al. UCHL1 impairs periodontal ligament stem cell osteogenesis in periodontitis. J Dent Res. 2023;102(1):61-71. doi: 10.1177/00220345221116031
» https://doi.org/10.1177/00220345221116031
- Man X, Li Q, Wang B, Zhang H, Zhang S, Li Z. DNMT3A and DNMT3B in breast tumorigenesis and potential therapy. Front Cell Dev Biol. 2022;10:916725. doi:10.3389/fcell.2022.916725
» https://doi.org/10.3389/fcell.2022.916725
- Liu Z, Chen T, Sun W, Yuan Z, Yu M, Chen G, et al. DNA demethylation rescues the impaired osteogenic differentiation ability of human periodontal ligament stem cells in high glucose. Sci Rep. 2016;6:27447. doi: 10.1038/srep27447
» https://doi.org/10.1038/srep27447
- Assis RI, Schmidt AG, Racca F, Silva RA, Zambuzzi WF, Silvério KG, et al. DNMT1 inhibitor restores RUNX2 expression and mineralization in periodontal ligament cells. DNA Cell Biol. 2021;40(5):662-74. doi: 10.1089/dna.2020.6239
» https://doi.org/10.1089/dna.2020.6239
- Ferreira RS, Assis RI, Feltran GD, Rosário Palma IC, Françoso BG, Zambuzzi WF, et al. Genome-wide DNA (hydroxy) methylation reveals the individual epigenetic landscape importance on osteogenic phenotype acquisition in periodontal ligament cells. J Periodontol. 2022;93(3):435-48. doi: 10.1002/jper.21-0218
» https://doi.org/10.1002/jper.21-0218
- Wang P, Wang B, Zhang Z, Wang Z. Identification of inflammation-related DNA methylation biomarkers in periodontitis patients based on weighted co-expression analysis. Aging (Albany NY). 2021;13(15):19678-95. doi: 10.18632/aging.203378
» https://doi.org/10.18632/aging.203378
- Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol. 2023;90:29-44. doi: 10.1016/j.semcancer.2023.02.003
» https://doi.org/10.1016/j.semcancer.2023.02.003
- Ma JB, Bai JY, Zhang HB, Jia J, Shi Q, Yang C, et al. KLF5 inhibits STAT3 activity and tumor metastasis in prostate cancer by suppressing IGF1 transcription cooperatively with HDAC1. Cell Death Dis. 2020;11(6):466. doi: 10.1038/s41419-020-2671-1
» https://doi.org/10.1038/s41419-020-2671-1
- Li C, Xiao F, Wen Y, Wu J, Huang N. Krüppel-like factor 5 -mediated Sirtuin6 promotes osteogenic differentiation and inhibits inflammatory injury of lipopolysaccharide-induced periodontal membrane stem cells by inhibiting nuclear fac-or kappa-B pathway. Bioengineered. 2022;13(3):6966-77. doi: 10.1080/21655979.2022.2036915
» https://doi.org/10.1080/21655979.2022.2036915
- Duan Y, An W, Wu H, Wu Y. Salvianolic acid c attenuates LPS-Induced inflammation and apoptosis in human periodontal ligament stem cells via toll-like receptors 4 (TLR4)/Nuclear Factor kappa B (NF-?B) pathway. Med Sci Monit. 2019;25:9499-508. doi: 10.12659/msm.918940
» https://doi.org/10.12659/msm.918940
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. doi:10.1006/meth.2001.1262
» https://doi.org/10.1006/meth.2001.1262
- Gusmão J, Fonseca KM, Ferreira BS, Freitas Alves BW, Ribeiro HL Jr, Lisboa MR, et al. Electroacupuncture reduces inflammation but not bone loss on periodontitis in arthritic rats. Inflammation. 2021;44(1):116-28. doi: 10.1007/s10753-020-01313-x
» https://doi.org/10.1007/s10753-020-01313-x
- Lu W, Zhang L, Ji K, Ding L, Wu G. Regulatory mechanisms of GCN5 in osteogenic differentiation of MSCs in periodontitis. Clin Exp Dent Res. 2023;9(3):464-71. doi: 10.1002/cre2.695
» https://doi.org/10.1002/cre2.695
- Marconi GD, Fonticoli L, Guarnieri S, Cavalcanti MF, Franchi S, Gatta V, et al. Ascorbic acid: a new player of epigenetic regulation in lps-gingivalis treated human periodontal ligament stem cells. Oxid Med Cell Longev. 2021;2021:6679708. doi: 10.1155/2021/6679708
» https://doi.org/10.1155/2021/6679708
- Queiroz A, Albuquerque-Souza E, Gasparoni LM, França BN, Pelissari C, Trierveiler M, et al. Therapeutic potential of periodontal ligament stem cells. World J Stem Cells. 2021;13(6):605-18. doi: 10.4252/wjsc.v13.i6.605
» https://doi.org/10.4252/wjsc.v13.i6.605
- Marconi GD, Diomede F, Pizzicannella J, Fonticoli L, Merciaro I, Pierdomenico SD, et al. Enhanced VEGF/VEGF-R and RUNX2 expression in human periodontal ligament stem cells cultured on sandblasted/etched titanium disk. Front Cell Dev Biol. 2020;8:315. doi: 10.3389/fcell.2020.00315
» https://doi.org/10.3389/fcell.2020.00315
- Tour G, Wendel M, Moll G, Tcacencu I. Bone repair using periodontal ligament progenitor cell-seeded constructs. J Dent Res. 2012;91(8):789-94. doi: 10.1177/0022034512452430
» https://doi.org/10.1177/0022034512452430
- Zhao Z, Liu J, Weir MD, Schneider A, Ma T, Oates TW, et al. Periodontal ligament stem cell-based bioactive constructs for bone tissue engineering. Front Bioeng Biotechnol. 2022;10:1071472. doi: 10.3389/fbioe.2022.1071472
» https://doi.org/10.3389/fbioe.2022.1071472
- Wu Y, Wang X, Zhang Y, Wen Z, Li Y, Zhang K, et al. Proanthocyanidins ameliorate LPS-inhibited osteogenesis of PDLSCs by restoring lysine lactylation. Int J Mol Sci. 2024;25(5):2947. doi: 10.3390/ijms25052947
» https://doi.org/10.3390/ijms25052947
- Naruishi K, Nagata T. Biological effects of interleukin-6 on gingival fibroblasts: cytokine regulation in periodontitis. J Cell Physiol. 2018;233(9):6393-400. doi: 10.1002/jcp.26521
» https://doi.org/10.1002/jcp.26521
- Wang L, Li X, Song Y, Zhang L, Ye L, Zhou X, et al. NELL1 augments osteogenesis and inhibits inflammation of human periodontal ligament stem cells induced by BMP9. J Periodontol. 2022;93(7):977-87. doi: 10.1002/jper.20-0517
» https://doi.org/10.1002/jper.20-0517
- Schilling E, Weiss R, Grahnert A, Bitar M, Sack U, Hauschildt S. Molecular mechanism of LPS-induced TNF-a biosynthesis in polarized human macrophages. Mol Immunol. 2018;93:206-15. doi: 10.1016/j.molimm.2017.11.026
» https://doi.org/10.1016/j.molimm.2017.11.026
- Wang RP, Huang J, Chan KW, Leung WK, Goto T, Ho YS, et al. IL-1ß and TNF-a play an important role in modulating the risk of periodontitis and Alzheimer's disease. J Neuroinflammation. 2023;20(1):71. doi: 10.1186/s12974-023-02747-4
» https://doi.org/10.1186/s12974-023-02747-4
- Zhou R, Shen L, Yang C, Wang L, Guo H, Yang P, et al. Periodontitis may restrain the mandibular bone healing via disturbing osteogenic and osteoclastic balance. Inflammation. 2018;41(3):972-83. doi: 10.1007/s10753-018-0751-5
» https://doi.org/10.1007/s10753-018-0751-5
- Qiu J, Liu X, Yang G, Gui Z, Ding S. MiR-29b level-mediated regulation of Klotho methylation via DNMT3A targeting in chronic obstructive pulmonary disease. Cell Dev. 2023;174:203827. doi: 10.1016/j.cdev.2023.203827
» https://doi.org/10.1016/j.cdev.2023.203827
- Xu JJ, Zhu L, Li HD, Du XS, Li JJ, Yin NN, et al. DNMT3a-mediated methylation of PSTPIP2 enhances inflammation in alcohol-induced liver injury via regulating STAT1 and NF-?B pathway. Pharmacol Res. 2022;177:106125. doi: 10.1016/j.phrs.2022.106125
» https://doi.org/10.1016/j.phrs.2022.106125
- Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149-55. doi: 10.1016/s0140-6736(04)16627-0
» https://doi.org/10.1016/s0140-6736(04)16627-0
- Li W, Huang X, Yu W, Xu Y, Huang R, Park J, et al. Activation of functional somatic stem cells promotes endogenous tissue regeneration. J Dent Res. 2022;101(7):802-11. doi: 10.1177/00220345211070222
» https://doi.org/10.1177/00220345211070222
- Qin W, Chen JY, Guo J, Ma T, Weir MD, Guo D, et al. Novel calcium phosphate cement with metformin-loaded chitosan for odontogenic differentiation of human dental pulp cells. Stem Cells Int. 2018;2018:7173481. doi: 10.1155/2018/7173481
» https://doi.org/10.1155/2018/7173481
- Zhou Y, Fan W, Xiao Y. The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC. Biomed Res Int. 2014;2014:890675. doi: 10.1155/2014/890675
» https://doi.org/10.1155/2014/890675
- Hara ES, Ono M, Eguchi T, Kubota S, Pham HT, Sonoyama W, et al. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells. PLoS One. 2013;8(12):e83545. doi: 10.1371/journal.pone.0083545
» https://doi.org/10.1371/journal.pone.0083545
- Li L, Ling Z, Dong W, Chen X, Vater C, Liao H, et al. Dnmt3a-Mediated DNA methylation changes regulate osteogenic differentiation of hMSCs cultivated in the 3D Scaffolds under oxidative stress. Oxid Med Cell Longev. 2019;2019:4824209. doi: 10.1155/2019/4824209
» https://doi.org/10.1155/2019/4824209
- Chen Z, Couble ML, Mouterfi N, Magloire H, Chen Z, Bleicher F. Spatial and temporal expression of KLF4 and KLF5 during murine tooth development. Arch Oral Biol. 2009;54(5):403-11. doi: 10.1016/j.archoralbio.2009.02.003
» https://doi.org/10.1016/j.archoralbio.2009.02.003
- Chen Z, Zhang Q, Wang H, Li W, Wang F, Wan C, et al. Klf5 mediates odontoblastic differentiation through regulating dentin-specific extracellular matrix gene expression during mouse tooth development. Sci Rep. 2017;7:46746. doi: 10.1038/srep46746
» https://doi.org/10.1038/srep46746
- Wangzhou K, Lai Z, Lu Z, Fu W, Liu C, Liang Z, et al. MiR-143-3p inhibits osteogenic differentiation of human periodontal ligament cells by targeting KLF5 and inactivating the Wnt/ß-catenin pathway. Front Physiol. 2020;11:606967. doi: 10.3389/fphys.2020.606967
Published
Issue
Section
License
Copyright (c) 2024 Jianling Guo, Huijie Jia
This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.