LncRNA XIST facilitates the odontogenic differentiation of dental pulp stem cells via the FUS/ZBTB16

Authors

  • Ruiqing Cheng Hebei Eye Hospital, Department of Oral Medicine, Xingtai https://orcid.org/0009-0006-1692-5384
  • Honglei Sun Hebei Eye Hospital, Department of Oral Medicine, Xingtai
  • Xiaotong Qiao Hebei Medical University, Department of Dental and Pulp Diseases, College of Stomatology, Shijiazhuang
  • Xuefang Chen Hebei Eye Hospital, Department of Oral Medicine, Xingtai

DOI:

https://doi.org/10.1590/1678-7757-2023-0444

Keywords:

Dental pulp stem cells, Odontogenic differentiation, LncRNA XIST, FUS, ZBTB16

Abstract

Objective: This study aims to explore the regulatory mechanism of long noncoding RNA X inactive specific transcript (lncRNA XIST) in the odontogenic differentiation of human dental pulp stem cells (hDPSCs). hDPSCs were obtained from freshly extracted third molars and identified by flow cytometry. Methodology: Odontogenic differentiation was induced in mineralized culture medium, and hDPSCs were infected with shRNA lentivirus targeting XIST or fused in sarcoma (FUS), followed by detection of alkaline phoshpatase (ALP) activity, alizarin red staining of mineralized nodules, Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) quantification of XIST expression, and Western blot analysis of FUS, ZBTB16, and odontogenic differentiation markers (DSPP and DMP1). IF-FISH was performed to detect the cellular localization of XIST and FUS. RIP assay validated the XIST and FUS binding. ZBTB16 mRNA stability was tested after actinomycin D treatment. hDPSCs were infected with oe-ZBTB16 lentivirus and further treated with sh-XIST for a combined experiment. Results: LncRNA XIST was highly expressed in hDPSCs with odontogenic differentiation. Downregulation of XIST or FUS weakened the ALP activity of hDPSCs, reduced mineralized nodules, diminished DSPP and DMP1 expressions. XIST binds to FUS to stabilize ZBTB16 mRNA and promote ZBTB16 expression. ZBTB16 overexpression partially reversed the inhibitory effect of XIST silencing on odontogenic differentiation of hDPSCs. Conclusion: In conclusion, XIST stabilizes ZBTB16 mRNA and promotes ZBTB16 expression by binding to FUS, thereby facilitating the odontogenic differentiation of hDPSCs.

Downloads

References

Bar JK, Lis-Nawara A, Grelewski PG. Dental pulp stem cell-derived secretome and its regenerative potential. Int J Mol Sci. 2021;22(21):12018. doi: 10.3390/ijms222112018

Aydin S, Sahin F. Stem cells derived from dental tissues. Adv Exp Med Biol. 2019;1144:123-32. doi: 10.1007/5584_2018_333

Zeng K, Kang Q, Li Y, Li W, Cheng Q, Xia W. EVL promotes osteo-/odontogenic differentiation of dental pulp stem cells via activating JNK signaling pathway. Stem Cells Int. 2023;2023:7585111. doi: 10.1155/2023/7585111

Dong Q, Wang Y, Mohabatpour F, Zheng L, Papagerakis S, Chen D, et al. Dental pulp stem cells: isolation, characterization, expansion, and odontoblast differentiation for tissue engineering. Methods Mol Biol. 2019;1922:91-101. doi: 10.1007/978-1-4939-9012-2_9

Nuti N, Corallo C, Chan BM, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12(5):511-23. doi: 10.1007/s12015-016-9661-9

Shah D, Lynd T, Ho D, Chen J, Vines J, Jung HD, et al. Pulp-dentin tissue healing response: a discussion of current biomedical approaches. J Clin Med. 2020;9(2):434. doi: 10.3390/jcm9020434

Fang F, Zhang K, Chen Z, Wu B. Noncoding RNAs: new insights into the odontogenic differentiation of dental tissue-derived mesenchymal stem cells. Stem Cell Res Ther. 2019;10(1):297. doi: 10.1186/s13287-019-1411-x

Zheng Y, Jia L. Long noncoding RNAs related to the odontogenic potential of dental mesenchymal cells in mice. Arch Oral Biol. 2016;67:1-8. doi: 10.1016/j.archoralbio.2016.03.001

Chen YK, Yen Y. The ambivalent role of lncRNA Xist in carcinogenesis. Stem Cell Rev Rep. 2019;15(2):314-23. doi: 10.1007/s12015-019-9871-z

Tao R, Li YX, Liu YK, Liu F, Zhou ZY. Profiling lncRNA alterations during TNF-alpha induced osteogenic differentiation of dental pulp stem cells. Mol Med Rep. 2019;19(4):2831-6. doi: 10.3892/mmr.2019.9894

Sukhanova MV, Singatulina AS, Pastre D, Lavrik OI. Fused in Sarcoma (FUS) in DNA repair: tango with poly (ADP-ribose) polymerase 1 and compartmentalisation of damaged DNA. Int J Mol Sci. 2020;21(19):7020. doi: 10.3390/ijms21197020

Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet. 2010;19(R1):R46-64. doi: 10.1093/hmg/ddq137

Kim EJ, Lee JM, Jung HS. Fus expression patterns in developing tooth. Dev Reprod. 2013;17(3):215-20. doi: 10.12717/DR.2013.17.3.215

Suliman BA, Xu D, Williams BR. The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol. 2012;2:74. doi: 10.3389/fonc.2012.00074

Arlier S, Kayisli UA, Semerci N, Ozmen A, Larsen K, Schatz F, et al. Enhanced ZBTB16 levels by progestin-only contraceptives induces decidualization and inflammation. Int J Mol Sci. 2023;24(13):10532. doi: 10.3390/ijms241310532

Felthaus O, Gosau M, Morsczeck C. ZBTB16 induces osteogenic differentiation marker genes in dental follicle cells independent from RUNX2. J Periodontol. 2014;85(5):e144-51. doi: 10.1902/jop.2013.130445

Shi SM, Liu TT, Wei XQ, Sun GH, Yang L, Zhu JF. GCN5 regulates ZBTB16 through acetylation, mediates osteogenic differentiation, and affects orthodontic tooth movement. Biochem Cell Biol. 2023;101(3):235-45. doi: 10.1139/bcb-2022-0080

Zhang DW, Wang HG, Zhang KB, Guo YQ, Yang LJ, Lv H. LncRNAXIST facilitates S1P-mediated osteoclast differentiation via interacting with FUS. J Bone Miner Metab. 2022;40(2):240-50. doi: 10.1007/s00774-021-01294-3

Zhu X, Niu C, Chen J, Yuan K, Jin Q, Hou L, et al. The role of ZBTB16 in odontogenic differentiation of dental pulp stem cells. Arch Oral Biol. 2022;135:105366. doi: 10.1016/j.archoralbio.2022.105366

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. doi: 10.1006/meth.2001.1262

Muppirala UK, Honavar VG, Dobbs D. Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics. 2011;12:489. doi: 10.1186/1471-2105-12-489

Zeng L, Sun S, Han D, Liu Y, Liu H, Feng H, et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells. Cell Signal. 2018;52:65-73. doi: 10.1016/j.cellsig.2018.08.015

Chen Z, Zhang K, Qiu W, Luo Y, Pan Y, Li J, et al. Genome-wide identification of long noncoding RNAs and their competing endogenous RNA networks involved in the odontogenic differentiation of human dental pulp stem cells. Stem Cell Res Ther. 2020;11(1):114. doi: 10.1186/s13287-020-01622-w

Chen Y, Zhang Y, Ramachandran A, George A. DSPP is essential for normal development of the dental-craniofacial complex. J Dent Res. 2016;95(3):302-10. doi: 10.1177/0022034515610768

Lim D, Wu KC, Lee A, Saunders TL, Ritchie HH. DSPP dosage affects tooth development and dentin mineralization. PLoS One. 2021;16(5):e0250429. doi: 10.1371/journal.pone.0250429

Sun Y, Lu Y, Chen L, Gao T, D’Souza R, Feng JQ, et al. DMP1 processing is essential to dentin and jaw formation. J Dent Res. 2011;90(5):619-24. doi: 10.1177/0022034510397839

Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, et al. Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem. 2004;279(18):19141-8. doi: 10.1074/jbc.M400490200

Kulan P, Karabiyik O, Kose GT, Kargul B. The effect of accelerated mineral trioxide aggregate on odontoblastic differentiation in dental pulp stem cell niches. Int Endod J. 2018;51(7):758-66. doi: 10.1111/iej.12747

Xi X, Ma Y, Xu Y, Ogbuehi AC, Liu X, Deng Y, et al. The genetic and epigenetic mechanisms involved in irreversible pulp neural inflammation. Dis Markers. 2021;2021:8831948. doi: 10.1155/2021/8831948

Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB transcription factors: key regulators of the development, differentiation and effector function of t cells. Front Immunol. 2021;12:713294. doi: 10.3389/fimmu.2021.713294

Usui N, Berto S, Konishi A, Kondo M, Konopka G, Matsuzaki H, et al. Correction: Zbtb16 regulates social cognitive behaviors and neocortical development. Transl Psychiatry. 2021;11(1):279. doi: 10.1038/s41398-021-01402-x

Onizuka S, Iwata T, Park SJ, Nakai K, Yamato M, Okano T, et al. ZBTB16 as a Downstream target gene of osterix regulates osteoblastogenesis of human multipotent mesenchymal stromal cells. J Cell Biochem. 2016;117(10):2423-34. doi: 10.1002/jcb.25634

Downloads

Published

2024-07-10

Issue

Section

Original Articles

How to Cite

Cheng, R., Sun, H., Qiao, X., & Chen, X. (2024). LncRNA XIST facilitates the odontogenic differentiation of dental pulp stem cells via the FUS/ZBTB16. Journal of Applied Oral Science, 32, e2023044. https://doi.org/10.1590/1678-7757-2023-0444