Phyllanthus emblica fruit extract alleviates halitosis and reduces the inflammatory response to oral bacteria
DOI:
https://doi.org/10.1590/1678-7757-2024-0047Keywords:
Phyllanthus emblica fruit extract, Halitosis-related bacteria, 50% Inhibition concentration, Volatile sulfur compound, Inflammation, Oral care productAbstract
Objective: To assess the efficacy of Phyllanthus emblica extract in alleviating halitosis and reducing the inflammatory response to halitosis-related bacteria. Methodology: This investigation, using Phyllanthus emblica fruit extract (PE), involved four aspects. First, we evaluated the effect on growth and aggregation of halitosis-related bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, and Solobacterium moorei, using a microdilution assay and scanning electron microscopy. Second, volatile sulfur compound (VSC) levels were measured on individuals with halitosis in randomized short-term (26 participants) and double-blind randomized long-term trials (18 participants in each group) after rinsing with PE for 3, 6, and 12 h, and 28 days. Third, we analyzed pro-inflammatory cytokine expression in TR146 cells using quantitative real-time PCR and enzyme-linked immunosorbent assays. Lastly, we assessed pro-inflammatory cytokine secretion and Toll-like receptor (TLR) 2 mRNA expression via the same experimental methods in a three-dimensional oral mucosal epithelial model (3D OMEM). Results: PE extract dose-dependently inhibited the growth of F. nucleatum (50% inhibition concentration [IC50]=0.079%), P. gingivalis (IC50=0.65%), and S. moorei (IC50=0.07%) and effectively prevented bacterial aggregation. Furthermore, VSC contents decreased significantly at 3, 6, and 12 h after rinsing with 5% PE compared with those in the control. Long-term use of mouthwash containing 5% PE for 28 days led to a significant decrease in VSC contents. PE attenuated the F. nucleatum- or P. gingivalis-stimulated mRNA expression and protein release of interleukin (IL)-6 and IL-8 in TR146 cells. It also suppressed IL-8 and prostaglandin E2 secretion and TLR2 mRNA expression in F. nucleatum-induced OMEMs. Conclusion: Our findings support the use of PE in oral care products to alleviate halitosis and it may reduce inflammation.
Downloads
References
Renvert S, Noack MJ, Lequart C, Roldán S, Laine ML. The underestimated problem of intra-oral halitosis in dental practice: an expert consensus review. Clin Cosmet Investig Dent. 2020;12:251-62. doi: 10.2147/CCIDE.S253765
Silva MF, Leite FR, Ferreira LB, Pola NM, Scannapieco FA, Demarco FF, et al. Estimated prevalence of halitosis: a systematic review and meta-regression analysis. Clin Oral Investig. 2018;22(1):47-55. doi: 10.1007/s00784-017-2164-5
Yaegaki K, Coil JM. Examination, classification, and treatment of halitosis; clinical perspectives. J Can Dent Assoc. 2000;66(5):257-61.
Bicak DA . Acurre t approach to halitosis and oral malodor- a mini review. Open Dent J. 2018;12:322-30. doi: 10.2174/1874210601812010322
Scully C, Greenman J. Halitology (breath odour: aetiopathogenesis and management). Oral Dis. 2012;18(4):333-45. doi: 10.1111/j.1601-0825.2011.01890.x
Suzuki N, Yoneda M, Takeshita T, Hirofuji T, Hanioka T. Induction and inhibition of oral malodor. Mol Oral Microbiol. 2019;34(3):85-96. doi: 10.1111/omi.12259
Nani BD, Lima PO, Marcondes FK, Groppo FC, Rolim GS, Moraes AB, et al. Changes in salivary microbiota increase volatile sulfur compounds production in healthy male subjects with academic-related chronic stress. PLOS ONE. 2017;12(3):e0173686. doi: 10.1371/journal.pone.0173686
Haraszthy VI, Zambon JJ, Sreenivasan PK, Zambon MM, Gerber D, Rego R, et al. Identification of oral bacterial species associated with halitosis. J Am Dent Assoc. 2007;138(8):1113-20. doi: 10.14219/jada.archive.2007.0325
Kilian M. The oral microbiome - friend or foe? Eur J Oral Sci. 2018;126(Suppl 1):5-12. doi: 10.1111/eos.12527
Şenel S. An overview of physical, microbiological and immune barriers of oral mucosa. Int J Mol Sci. 2021;22(15):7821. doi: 10.3390/ijms22157821
Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect. 2015;17(7):505-16. doi: 10.1016/j.micinf.2015.03.014
Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23:141-7. doi: 10.1016/j.mib.2014.11.013
Groeger S, Zhou Y, Ruf S, Meyle J. Pathogenic mechanisms of fusobacterium nucleatum on oral epithelial cells. Front Oral Health. 2022;3:831607. doi: 10.3389/froh.2022.831607
Hajishengallis G. Immune evasion strategies of Porphyromonas gingivalis. J Oral Biosci. 2011;53(3):233-40. doi: 10.2330/joralbiosci.53.233
Lee K, Roberts JS, Choi CH, Atanasova KR, Yilmaz Ö. Porphyromonas gingivalis traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence. 2018;9(1):845-59. doi: 10.1080/21505594.2018.1454171
Savitri IJ, Ouhara K, Fujita T, Kajiya M, Miyagawa T, Kittaka M, et al. Irsogladine maleate inhibits Porphyromonas gingivalis-mediated expression of toll-like receptor 2 and interleukin-8 in human gingival epithelial cells. J Periodontal Res. 2015;50(4):486-93. doi: 10.1111/jre.12231
Martinho FC, Chiesa WM, Leite FR, Cirelli JA, Gomes BP. Antigenicity of primary endodontic infection against macrophages by the levels of PGE(2) production. J Endod. 2011;37(5):602-7. doi: 10.1016/j.joen.2010.12.005
Fujiwara N, Murakami K, Nakao M, Toguchi M, Yumoto H, Amoh T, et al. Novel reuterin-related compounds suppress odour by periodontopathic bacteria. Oral Dis. 2017;23(4):492-7. doi: 10.1111/odi.12638
Chu C, Deng J, Man Y, Qu Y. Green tea extracts epigallocatechin-3-gallate for different treatments. BioMed Res Int. 2017;2017:5615647. doi: 10.1155/2017/5615647
Rattanasen P. Antioxidant and antibacterial activities of vegetables and fruits commonly consumed in Thailand. Pak J Biol Sci. 2012;15(18):877-82. doi: 10.3923/pjbs.2012.877.882
Mahata S, Pandey A, Shukla S, Tyagi A, Husain SA, Das BC, et al. Anticancer activity of Phyllanthus emblica Linn. (Indian gooseberry): inhibition of transcription factor AP-1 and HPV gene expression in cervical cancer cells. Nutr Cancer. 2013:65 Suppl 1:88-97. doi: 10.1080/01635581.2013.785008
Gao Q, Li X, Huang H, Guan Y, Mi Q, Yao J. The efficacy of a chewing gum containing Phyllanthus emblica Fruit extract in improving Oral Health. Curr Microbiol. 2018;75(5):604-10. doi: 10.1007/s00284-017-1423-7
Pourhajibagher M, Chiniforush N, Ghorbanzadeh R, Bahador A. Photo-activated disinfection based on indocyanine green against cell viability and biofilm formation of Porphyromonas gingivalis. Photodiagnosis Photodyn Ther. 2017;17:61-4. doi: 10.1016/j.pdpdt.2016.10.003
Villinski JR, Bergeron C, Cannistra JC, Gloer JB, Coleman CM, Ferreira D, et al. Pyrano-isoflavans from Glycyrrhiza uralensis with antibacterial activity against Streptococcus mutans and Porphyromonas gingivalis. J Nat Prod. 2014;77(3):521-6. doi: 10.1021/np400788r
Watanabe N, Yokoe S, Ogata Y, Sato S, Imai K. Exposure to Porphyromonas gingivalis induces production of proinflammatory cytokine via TLR2 from human respiratory epithelial cells. J Clin Med. 2020;9(11):3433. doi: 10.3390/jcm9113433
Zupin L, Rupel K, Ottaviani G, Poropat A, Di Lenarda R, Biasotto M, et al. Effect of laser therapy on defensins’ gene expression in TR146 epithelial cell line. Protein Pept Lett. 2018;25(4):326-9. doi: 10.2174/0929866525666180221123249
Lin GC, Leitgeb T, Vladetic A, Friedl HP, Rhodes N, Rossi A, et al. Optimization of an oral mucosa in vitro model based on cell line TR146. Tissue Barriers. 2020 2;8(2):1748459. doi: 10.1080/21688370.2020.1748459
Li G, Yu Q, Li M, Zhang D, Yu J, Yu X, et al.Phyllanthus emblica fruits: a polyphenol-rich fruit with potential benefits for oral management. Food Funct. 2023;14(17):7738-59. doi: 10.1039/d3fo01671d
Gul M, Liu ZW, Iahtisham-ul-Haq W, Rabail R, Faheem F, Walayat N, et al. Functional and nutraceutical significance of amla (Phyllanthus emblica L.): a review. Antioxidants (Basel). 2022;11(5):816. doi: 10.3390/antiox11050816
Krespi YP, Shrime MG, Kacker A. The relationship between oral malodor and volatile sulfur compound-producing bacteria. Otolaryngol Head Neck Surg. 2006;135(5):671-6. doi: 10.1016/j.otohns.2005.09.036
Tanaka M, Toe M, Nagata H, Ojima M, Kuboniwa M, Shimizu K, et al. Effect of Eucalyptus-extract chewing gum on oral malodor: a double-masked, randomized trial. J Periodontol. 2010;81(11):1564-71. doi: 10.1902/jop.2010.100249
Yasuda H, Arakawa T. Deodorizing mechanism of (–)-epigallocatechin gallate against methyl mercaptan. Biosci Biotechnol Biochem. 1995;59(7):1232-6. doi: 10.1271/bbb.59.1232
Fracassetti D, Ballabio D, Mastro M, Tirelli A, Jeffery DW. Response surface methodology approach to evaluate the effect of transition metals and oxygen on photo-degradation of methionine in a model wine system containing riboflavin. J Agric Food Chem. 2022;70(51):16347-57. doi: 10.1021/acs.jafc.2c05275
Delitto AE, Rocha F, Decker AM, Amador B, Sorenson HL, Wallet SM. MyD88-mediated innate sensing by oral epithelial cells controls periodontal inflammation. Arch Oral Biol. 2018;87:125-30. doi: 10.1016/j.archoralbio.2017.12.016
Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the ‘red complex’, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000. 2005;38:72-122. doi: 10.1111/j.1600-0757.2005.00113.x
Settineri S, Mento C, Gugliotta SC, Saitta A, Terranova A, Trimarchi G, et al. Self-reported halitosis and emotional state: impact on oral conditions and treatments. Health Qual Life Outcomes. 2010;8:34. doi: 10.1186/1477-7525-8-34
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Applied Oral Science

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.