The action of microbial collagenases in dentinal matrix degradation in root caries and potential strategies for its management: a comprehensive state-of-the-art review

Authors

DOI:

https://doi.org/10.1590/1678-7757-2024-0013

Keywords:

Dental caries, Root caries, Collagenases, Microbial collagenase, Matrix metalloproteinases

Abstract

Conventional views associate microbial biofilm with demineralization in root caries (RC) onset, while research on their collagenases role in the breakdown of collagen matrix has been sporadically developed, primarily in vitro. Recent discoveries, however, reveal proteolytic bacteria enrichment, specially Porphyromonas and other periodontitis-associated bacteria in subgingivally extended lesions, suggesting a potential role in RC by the catabolism of dentin organic matrix. Moreover, genes encoding proteases and bacterial collagenases, including the U32 family collagenases, were found to be overexpressed in both coronal and root dentinal caries. Despite these advancements, to prove microbial collagenolytic proteases’ definitive role in RC remains a significant challenge. A more thorough investigation is warranted to explore the potential of anti-collagenolytic agents in modulating biofilm metabolic processes or inhibiting/reducing the size of RC lesions. Prospective treatments targeting collagenases and promoting biomodification through collagen fibril cross-linking show promise for RC prevention and management. However, these studies are currently in the in vitro phase, necessitating additional research to translate findings into clinical applications. This is a comprehensive state-of-the-art review aimed to explore contributing factors to the formation of RC lesions, particularly focusing on collagen degradation in root tissues by microbial collagenases.

Downloads

References

Hayes M, Burke F, Allen PF. Incidence, prevalence and global distribution of root caries. Monogr Oral Sci. 2017;26:1-8. doi: 10.1159/000479301

Hariyani N, Setyowati D, Spencer AJ, Luzzi L, Do LG. Root caries incidence and increment in the population - a systematic review, meta-analysis and meta-regression of longitudinal studies. J Dent. 2018;77:1-7. doi: 10.1016/j.jdent.2018.06.013

Griffin SO, Griffin PM, Swann JL, Zlobin N. Estimating rates of new root caries in older adults. J Dent Res. 2004;83(8):634-8. doi: 10.1177/154405910408300810

Damé-Teixeira N, Parolo CC, Maltz M. Specificities of caries on root surface. Monogr Oral Sci. 2017;26:15-25. doi: 10.1159/000479303

Reis A, Soares PV, de Geus J, Loguercio AD. Clinical performance of root surface restorations. Monogr Oral Sci. 2017;26:115-24. doi: 10.1159/000479353

Gostemeyer G, Mata C, McKenna G, Schwendicke F. Atraumatic vs conventional restorative treatment for root caries lesions in older patients: meta- and trial sequential analysis. Gerodontology. 2019;36(3):285-93. doi: 10.1111/ger.12409

Burrow MF, Stacey MA. Management of cavitated root caries lesions: minimum intervention and alternatives. Monogr Oral Sci. 2017;26:106-14. doi: 10.1159/000479352

Wierichs RJ, Meyer-Lueckel H. Response to letter to the editor, “Systematic review on noninvasive treatment of root caries lesions”. J Dent Res. 94. 2015. doi: 10.1177/0022034515591480

Meyer-Lueckel H, Machiulskiene V, Giacaman RA. How to intervene in the root caries process? Systematic review and meta-analyses. Caries Res;2019. p. 1-10. doi: 10.1159/000501588

Paris S, Banerjee A, Bottenberg P, Breschi L, Campus G, Doméjean S, et al. How to intervene in the caries process in older adults: a joint ORCA and EFCD expert Delphi Consensus Statement. Caries Res. 2020;54(5-6):1-7. doi: 10.1159/000510

Dame-Teixeira N, Parolo CC, Maltz M, Tugnait A, Devine D, Do T. Actinomyces spp. gene expression in root caries lesions. J Oral Microbiol. 2016;8:32383. doi: 10.3402/jom.v8.32383

Damé-Teixeira N, Parolo C, Maltz M, Rup A, Devine D, Do T. Gene expression of bacterial collagenolytic proteases in root caries. J Oral 10-Microb. 2018;10:1424475. doi: 10.1080/20002297.2018.1424475

Santos HS, Do T, Parolo CC, Poloni JF, Maltz M, Arthur RA, et al. Streptococcus mutans gene expression and functional profile in root caries: an RNA-Seq study. Caries Res. 2022;56(2):116-28. doi: 10.1159/000524196

Santos HS, Damé-Teixeira N, Nagano MH, Do T, Parolo CC, Maltz M, et al. Acid tolerance of Lactobacillus spp. on root carious lesions: a complex and multifaceted response. Arch Oral Biol. 2023;156:105820. doi: 10.1016/j.archoralbio.2023.105820

Barbosa CB, Monici Silva I, Cena JA, Stefani CM, Dame-Teixeira N. Presence of host and bacterial-derived collagenolytic proteases in carious dentin: a systematic review of ex vivo studies. Front Cell Infect Microbiol. 2023;13:1278754. doi: 10.3389/fcimb.2023.1278754

Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization. Front Biosci (Elite Ed). 2011 Jan 1;3:711-35. doi: 10.2741/e281

Bosshardt DD, Selvig KA. Dental cementum: the dynamic tissue covering of the root. Periodontol 2000. 1997;13:41-75. doi: 10.1111/j.1600-0757.1997.tb00095.x

Hoppenbrouwers PM, Driessens FC, Borggreven JM. The vulnerability of unexposed human dental roots to demineralization. J Dent Res. 1986;65(7):955-8. doi: 10.1177/00220345860650071101

Klimuszko E, Orywal K, Sierpinska T, Sidun J, Golebiewska M. Evaluation of calcium and magnesium contents in tooth enamel without any pathological changes: in vitro preliminary study. Odontology. 2018;106(4):369-76. doi: 10.1007/s10266-018-0353-6

Teruel JD, Alcolea A, Hernández A, Ruiz AJ. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015;60(5):768-75. doi: 10.1016/j.archoralbio.2015.01.014

Christner P, Robinson P, Clark CC. A preliminary characterization of human cementum collagen. Calcif Tissue Res. 1977;23(2):147-50. doi: 10.1007/BF02012780

Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, et al. Dentin bonding systems: from dentin collagen structure to bond preservation and clinical applications. Dent Mater. 2018;34(1):78-96.

Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929-58. doi: 10.1016/j.dental.2017.11.005

Ricard-Blum S, Ruggiero F. The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris). 2005;53(7):430-42. doi: 10.1016/j.patbio.2004.12.024

Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1):a004978. doi: 10.1101/cshperspect.a004978

Gelse K, Pöschl E, Aigner T. Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531-46. doi: 10.1016/j.addr.2003.08.002

Hulmes DJ, Miller A. Quasi-hexagonal molecular packing in collagen fibrils. Nature. 1979;282(5741):878-80. doi: 10.1038/282878a0

Varma S, Orgel JP, Schieber JD. Nanomechanics of Type I Collagen. Biophys J. 2016;111(1):50-6. doi: 10.1016/j.bpj.2016.05.038

Takahashi N, Nyvad B. Ecological hypothesis of dentin and root caries. Caries Res. 2016;50(4):422-31. doi: 10.1159/000447309

Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7(10). doi: 10.1371/journal.pone.004772231- Do T, Damé-Teixeira N, Naginyte M, Marsh PD. Root surface biofilms and caries. Monogr Oral Sci. 2017;26:26-34. doi: 10.1159/00047

Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am. 2010;54(3):441-54. doi: 10.1016/j.cden.2010.03.002

Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90(3):294-303. doi: 10.1177/0022034510379602

Nyvad B, Fejerskov O. An ultrastructural study of bacterial invasion and tissue breakdown in human experimental root-surface caries. J Dent Res. 1990;69(5):1118-25. doi: 10.1177/00220345900690050101

Deyhle H, Bunk O, Muller B. Nanostructure of healthy and caries-affected human teeth. Nanomedicine. 2011;7(6):694-701. doi: 10.1016/j.nano.2011.09.005

Tjaderhane L, Buzalaf MA, Carrilho M, Chaussain C. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of ‘dentin degradomics’. Caries Res. 2015;49(3):193-208. doi: 10.1159/000363582

Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases. J Periodontol. 1993;64(5 Suppl):474-84. doi: 10.1902/jop.1993.64.5s.474

Simon-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A. A tissue-dependent hypothesis of dental caries. Caries Res. 2013;47(6):591-600. doi: 10.1159/000351663

Watanabe-Nakayama T, Itami M, Kodera N, Ando T, Konno H. High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Sci Rep. 2016;6:28975. doi: 10.1038/srep28975

Harrington DJ. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun. 1996;64(6):1885-91. doi: 10.1128/iai.64.6.1885-1891.1996

Zhang YZ, Ran LY, Li CY, Chen XL. Diversity, structures, and collagen-degrading mechanisms of bacterial collagenolytic proteases. Appl Environ Microbiol. 2015;81(18):6098-107. doi: 10.1128/AEM.00883-15

Kato MT, Leite AL, Hannas AR, Calabria MP, Magalhães AC, Pereira JC, et al. Impact of protease inhibitors on dentin matrix degradation by collagenase. J Dent Res. 2012;91(12):1119-23. doi: 10.1177/0022034512455801

Philominathan ST, Koide T, Matsushita O, Sakon J. Bacterial collagen-binding domain targets undertwisted regions of collagen. Protein Sci. 2012;21(10):1554-65. doi: 10.1002/pro.2145

Vidal CM, Tjäderhane L, Scaffa PM, Tersariol IL, Pashley D, Nader HB, et al. Abundance of MMPs and cysteine cathepsins in caries-affected dentin. J Dent Res. 2014;93(3):269-74. doi: 10.1177/0022034513516979

Welgus HG, Jeffrey JJ, Eisen AZ. Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J Biol Chem. 1981;256(18):9516-21.

Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407-17. doi: 10.1128/JCM.01410-07

Preza D, Olsen I, Aas JA, Willumsen T, Grinde B, Paster BJ. Bacterial profiles of root caries in elderly patients. J Clin Microbiol. 2008;46(6):2015-21. doi: 10.1128/JCM.02411-07

Hashimoto K, Sato T, Shimauchi H, Takahashi N. Profiling of dental plaque microflora on root caries lesions and the protein-denaturing activity of these bacteria. Am J Dent. 2011;24(5):295-9.

Takenaka S, Edanami N, Komatsu Y, Nagata R, Naksagoon T, Sotozono M, et al. Periodontal pathogens inhabit root caries lesions extending beyond the gingival margin: a next-generation sequencing analysis. Microorganisms. 2021;9(11). doi: 10.3390/microorganisms9112349

Nyvad B, Takahashi N. Integrated hypothesis of dental caries and periodontal diseases. J Oral Microbiol. 2020;12(1):1710953. doi: 10.1080/20002297.2019.171095

Syed SA, Loesche WJ, Pape HL Jr, Grenier E. Predominant cultivable flora isolated from human root surface caries plaque. Infect Immun. 1975;11(4):727-31. doi: 10.1128/iai.11.4.727-731.1975

Van Strijp AJ, Klont B, Ten Cate JM. Solubilization of dentin matrix collagen in situ. J Dent Res. 1992;71(8):1498-502. doi: 10.1177/00220345920710080701

van Strijp AJ, Jansen DC, DeGroot J, ten Cate JM, Everts V. Host-derived proteinases and degradation of dentine collagen in situ. Caries Res. 2003;37(1):58-65. doi: 10.1159/000068223

van Strijp AJ, Takatsuka T, Sono R, Iijima Y. Inhibition of dentine collagen degradation by hesperidin: an in situ study. Eur J Oral Sci. 2015;123(6):447-52. doi: 10.1111/eos.12225

van Strijp AJ, van Steenbergen TJ, de Graaff J, ten Cate JM. Bacterial colonization and degradation of demineralized dentin matrix in situ. Caries Res. 1994;28(1):21-7. doi: 10.1159/000261615

Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 2002;99(22):14434-9. doi: 10.1073/pnas.172501299

Navais R, Méndez J, Pérez-Pascual D, Cascales D, Guijarro JA. The yrpAB operon of Yersinia ruckeri encoding two putative U32 peptidases is involved in virulence and induced under microaerobic conditions. Virulence. 2014;5(5):619-24. doi: 10.4161/viru.29363

Kato T, Takahashi N, Kuramitsu HK. Sequence analysis and characterization of the Porphyromonas gingivalis prt C gene, which expresses a novel collagenase activity. J Bacteriol. 1992;174(12):3889-95. doi: 10.1128/jb.174.12.3889-3895.1992

Kawasaki K, Featherstone JD. Effects of collagenase on root demineralization. J Dent Res. 1997;76(1):588-95. doi: 10.1177/00220345970760011001

Tjäderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res. 1998;77(8):1622-9. doi: 10.1177/00220345980770081001

Rosengren L, Winblad B. Proteolytic activity of Streptococcus mutans (GS-5). Oral Surg Oral Med Oral Pathol. 1976;42(6):801-9. doi: 10.1016/0030-4220(76)90103-1

Bowden GH. Microbiology of root surface caries in humans. J Dent Res. 1990;69(5):1205-10. doi: 10.1177/00220345900690051701

Ellen RP, Banting DW, Fillery ED. Streptococcus mutansand Lactobacillus detection in the assessment of dental root surface caries risk. J Dent Res. 1985;64(10):1245-9. doi: 10.1177/00220345850640101301

Nyvad B, Kilian M. Microflora associated with experimental root surface caries in humans. Infect Immun. 1990;58(6):1628-33. doi: 10.1128/iai.58.6.1628-1633

Barbosa CB, Salles LP, Dame-Teixeira N. Isolamento e construção de cassetes de inativação de genes codificadores de colagenases de Streptococcus mutans com possível envolvimento na degradação colagenolítica em Cárie Radicular [Dissertação]: University of Brasilia; 2020.

Schwendicke F, Gostemeyer G. Cost-effectiveness of root caries preventive treatments. J Dent. 2017;56:58-64. doi: 10.1016/j.jdent.2016.10.016

Mellberg JR, Sanchez M. Remineralization by a monofluorophosphate dentifrice in vitro of root dentin softened by artificial caries. J Dent Res. 1986;65(7):959-62. doi: 10.1177/00220345860650071201

Clarkson BH, Rafter ME. Emerging methods used in the prevention and repair of carious tissues. J Dent Educ. 2001;65(10):1114-20.

Baysan A, Lynch E, Ellwood R, Davies R, Petersson L, Borsboom P. Reversal of primary root caries using dentifrices containing 5,000 and 1,100 ppm fluoride. Caries Res. 2001;35(1):41-6. doi: 10.1159/000047429

Wierichs RJ, Meyer-Lueckel H. Systematic review on noninvasive treatment of root caries lesions. J Dent Res. 2015;94(2):261-71. doi: 10.1177/0022034514557330

Araújo MS, Souza LC, Apolonio FM, Barros LO, Reis A, Loguercio AD, et al. Two-year clinical evaluation of chlorhexidine incorporation in two-step self-etch adhesive. J Dent. 2015;43(1):140-8. doi: 10.1016/j.jdent.2014.07.010

Montagner AF, Perroni AP, Corrêa MB, Masotti AS, Pereira-Cenci T, Cenci MS. Effect of pre-treatment with chlorhexidine on the retention of restorations: a randomized controlled trial. Braz Dent J. 2015;26(3):234-41. doi: 10.1590/0103-6440201300009

Cai L, Wu CD. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J Nat Prod. 1996;59(10):987-90. doi: 10.1021/np960451q

Li XC, Cai L, Wu CD. Antimicrobial compounds from Ceanothus americanus against oral pathogens. Phytochemistry. 1997;46(1):97-102. doi: 10.1016/s0031-9422(97)00222-7.

Chu JP, Li JY, Hao YQ, Zhou XD. Effect of compounds of Galla chinensis on remineralisation of initial enamel carious lesions in vitro. J Dent. 2007;35(5):383-7. doi: 10.1016/j.jdent.2006.11.007

Wang Y, Green A, Yao X, Liu H, Nisar S, Gorski JP, et al. Cranberry juice extract rapidly protects demineralized dentin against digestion and Inhibits Its Gelatinolytic Activity. Materials (Basel). 2021;14(13). doi: 10.3390/ma14133637

Dame-Teixeira N, El-Gendy R, Monici Silva I, Holanda CA, Oliveira AS, Romeiro LAS, et al. Sustainable multifunctional phenolic lipids as potential therapeutics in Dentistry. Sci Rep. 2022;12(1):9299. doi: 10.1038/s41598-022-13292-0

Walter R, Miguez PA, Arnold RR, Pereira PN, Duarte WR, Yamauchi M. Effects of natural cross-linkers on the stability of dentin collagen and the inhibition of root caries in vitro. Caries Res. 2008;42(4):263-8. doi: 10.1159/000135671

Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998;22(3):181-7. doi: 10.1016/s8756-3282(97)00279-2

Bedran-Russo AK, Castellan CS, Shinohara MS, Hassan L, Antunes A. Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater. 2011;7(4):1735-41. doi: 10.1016/j.actbio.2010.12.013

Tezvergil-Mutluay A, Mutluay MM, Agee KA, Seseogullari-Dirihan R, Hoshika T, Cadenaro M, et al. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro. J Dent Res. 2012;91(2):192-6. doi: 10.1177/0022034511427705

Scheffel DL, Hebling J, Scheffel RH, Agee KA, Cadenaro M, Turco G, et al. Stabilization of dentin matrix after cross-linking treatments, in vitro. Dent Mater. 2014;30(2):227-33. doi: 10.1016/j.dental.2013.11.007

Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A. 2003;65(1):118-24. doi: 10.1002/jbm.a.1046084- Xie Q, Bedran-Russo AK, Wu CD. In vitro remineralization effects of grape seed extract on artificial root caries. J Dent. 2008;36(11):900-6. doi: 10.1016/j.jdent.2008.07.011

Downloads

Published

2024-05-20

Issue

Section

Review

How to Cite

Barbosa, C. de B., Silva, I. M., & Dame-Teixeira, N. (2024). The action of microbial collagenases in dentinal matrix degradation in root caries and potential strategies for its management: a comprehensive state-of-the-art review. Journal of Applied Oral Science, 32, e20240013. https://doi.org/10.1590/1678-7757-2024-0013