Evaluation of surface roughness, wettability and adhesion of multispecies biofilm on 3D-printed resins for the base and teeth of complete dentures
DOI:
https://doi.org/10.1590/1678-7757-2023-0326Keywords:
Computer-aided design, Three-dimensional printing, Acrylic resins, Candidiasis, Complete denturesAbstract
Studies evaluating the roughness, wettability and microbial adhesion of 3D-printed resins for complete denture bases and teeth are scarce. Objective: This study evaluated the surface roughness, wettability and adhesion of multispecies biofilms (Candida albicans, Staphylococcus aureus and Streptococcus mutans) on 3D-printed resins for complete denture bases and teeth compared to conventional resins (heat-polymerized acrylic resin; artificial pre-fabricated teeth). Methodology: Circular specimens (n=39; 6.0 mm Ø × 2.0 mm) of each group were subjected to roughness (n=30), wettability (n=30) and biofilm adhesion (n=9) tests. Three roughness measurements were taken by laser confocal microscopy and a mean value was calculated. Wettability was evaluated by the contact angle of sessile drop method, considering the mean of the three evaluations per specimen. In parallel, microorganism adhesion to resin surfaces was evaluated using a multispecies biofilm model. Microbial load was evaluated by determining the number of Colony Forming Units (CFU/mL) and by scanning electron microscopy (SEM). Data were subjected to the Wald test in a generalized linear model with multiple comparisons and Bonferroni adjustment, as well as two-way ANOVA (α=5%). Results: The roughness of the conventional base resin (0.01±0.04) was lower than that of the conventional tooth (0.14±0.04) (p=0.023) and 3D-printed base (0.18±0.08) (p<0.001). For wettability, conventional resin (84.20±5.57) showed a higher contact angle than the 3D-printed resin (60.58±6.18) (p<0.001). Higher microbial loads of S. mutans (p=0.023) and S. aureus (p=0.010) were observed on the surface of the conventional resin (S. mutans: 5.48±1.55; S. aureus: 7.01±0.57) compared to the 3D-printed resin (S. mutans: 4.11±1.96; S. aureus: 6.42±0.78). The adhesion of C. albicans was not affected by surface characteristics. The conventional base resin showed less roughness than the conventional dental resin and the printed base resin. Conclusion: The 3D-printed resins for base and tooth showed less hydrophobicity and less adhesion of S. mutans and S. aureus than conventional resins.
Downloads
References
asaka A, Matsunaga S, Odaka K, Ishizaki K, Ueda T, Abe S, et al. Accuracy and retention of denture base fabricated by heat curing and additive manufacturing. J Prosthodont Res. 2019;63(1):85-9. doi: 10.1016/j.jpor.2018.08.007
Baba NZ, Goodacre BJ, Goodacre CJ, Müller F, Wagner S. CAD/CAM complete denture systems and physical properties: a review of the literature. J Prosthodont. 2021;30(S2):113-24. doi: 10.1111/jopr.13243
Kessler A, Reymus M, Hickel R, Kunzelmann KH. Three-body wear of 3D printed temporary materials. Dent Mater. 2019;35(12):1805-12.
Fekri LK, Abdelaziz MS. Digital duplication of maxillary complete denture: a dental technique. J Esthet Restor Dent. 2023;35(7):1139-43.
Gruber S, Kamnoedboon P, Özcan M, Srinivasan M. CAD/CAM complete denture resins: an in vitro evaluation of color stability. J Prosthodont. 2021;30(5):430-9. doi: 10.1111/jopr.13246
Schubert A, Bürgers R, Baum F, Kurbad O, Wassmann T. Influence of the manufacturing method on the adhesion of candida albicans and streptococcus mutans to oral splint resins. Polymers (Basel). 2021;11;13(10):1534. doi: 10.3390/polym13101534
Alfouzan AF, Alotiabi HM, Labban N, Al-Otaibi HN, Al Taweel SM, AlShehri HA. Color stability of 3D-printed denture resins: effect of aging, mechanical brushing and immersion in staining medium. J Adv Prosthodont. 2021;13(3):160-71. doi: 10.4047/jap.2021.13.3.160
Atalay S, Çakmak G, Fonseca M, Schimmel M, Yilmaz B. Effect of different disinfection protocols on the surface properties of CAD-CAM denture base materials. J Prosthet Dent 2022;8:S0022-3913(21)00692-2. doi: 10.1016/j.prosdent.2021.12.007
Freitas RF, Duarte S, Feitosa S, Dutra V, Lin WS, Panariello BH, et al. Physical, mechanical, and anti-biofilm formation properties of CAD-CAM Milled or 3D printed denture base resins: in vitro analysis. J Prosthodont. 2023;32(S1):38-44. doi: 10.1111/jopr.13554
Goswami RR, Pohare SD, Raut JS, Karuppayil SM. Cell surface hydrophobicity as a virulence factor in candida albicans. Biosci Biotech Res Asia. 2017;14(4). doi: http://dx.doi.org/10.13005/bbra/2598
Hotta M, Morikawa T, Tamura D, Kusakabe S. Adherence of Streptococcus sanguinis and Streptococcus mutans to saliva-coated S-PRG resin blocks. Dent Mater J. 2014;33(2):261-7.
Sampaio C, Pessan JP, Nunes GP, Magno MB, Maia LC, Exterkate R, et al. Are the counts of Streptococcus mutans and Staphylococcus aureus changed in complete denture wearers carrying denture stomatitis? A systematic review with meta-analyses. J Prosthet Dent. 2023;18:S0022-3913(23)00180-4. doi: 10.1016/j.prosdent.2023.03.015
Murat S, Alp G, Alatalı C, Uzun M. In vitro evaluation of adhesion of candida albicans on CAD/CAM PMMA-based polymers. J Prosthodont. 2019;28(2):e873-e879. doi: 10.1111/jopr.12942
Li P, Fernandez PK, Spintzyk S, Schmidt F, Yassine J, Beuer F, et al. Effects of layer thickness and build angle on the microbial adhesion of denture base polymers manufactured by digital light processing. J Prosthodont Res. 2023;67(4):562-7.
Pagedar A, Singh J, Batish VK. Surface hydrophobicity, nutritional contents affect Staphylococcus aureus biofilms and temperature influences its survival in preformed biofilms. J Basic Microbiol. 2010;50(Suppl 1):S98-106. doi: 10.1002/jobm.201000034
Kouidhi B, Zmantar T, Hentati H, Bakhrouf A. Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microb Pathog. 2010;49(1-2):14-22.
Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res. 2015;94(8):1027-34. doi: 10.1177/0022034515587690
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, et al. Mussel-inspired biomaterials: from chemistry to clinic. Bioeng Transl Med. 2022;7(3):e10385. doi: 10.1002/btm2.10385
Schubert A, Wassmann T, Holtappels M, Kurbad O, Krohn S, Bürgers R. Predictability of microbial adhesion to dental materials by roughness parameters. Coatings. 2019;9(7):456.
Quirynen M, Marechal M, Van Steenberghe D, Busscher HJ, Van Der Mei HC. The bacterial colonization of intra‐ oral hard surfaces in vivo: Influence of surface free energy and surface roughness. Biofouling. 1991;4(1-3):187-98. doi: https://doi.org/10.1080/08927019109378209
Yuan C, Wang X, Gao X, Chen F, Liang X, Li D. Effects of surface properties of polymer-based restorative materials on early adhesion of Streptococcus mutans in vitro. J Dent. 2016;54:33-40. doi: 10.1016/j.jdent.2016.07.010
Ozel GS, Guneser MB, Inan O, Eldeniz AU. Evaluation of C. Albicans and S. Mutans adherence on different provisional crown materials. J Adv Prosthodont. 2017;9(5):335-40. doi: 10.4047/jap.2017.9.5.335
Osman RB, Khoder G, Fayed B, Kedia RA, Elkareimi Y, Alharbi N. Influence of fabrication technique on adhesion and biofilm formation of candida albicans to conventional, milled, and 3d-printed denture base resin materials: a comparative in vitro study. Polymers (Basel). 2023;15(8):1836. doi: 10.3390/polym15081836
Foggi CC, Machado AL, Zamperini CA, Fernandes D, Wady AF, Vergani CE. Effect of surface roughness on the hydrophobicity of a denture-base acrylic resin and Candida albicans colonization. J Investig Clin Dent. 2016;7(2):141-8. doi: 10.1111/jicd.12125
Viitaniemi L, Abdulmajeed A, Sulaiman T, Söderling E, Närhi T. Adhesion and early colonization of s. mutans on lithium disilicate reinforced glass-ceramics, monolithic zirconia and dual cure resincement. Eur J Prosthodont Restor Dent. 2017;25(4):228-34.
Liber-Kneć A, Łagan S. Surface testing of dental biomaterials-determination of contact angle and surface free energy. Materials (Basel). 2021;21;14(11):2716. doi: 10.3390/ma14112716
Wang C, van der Mei HC, Busscher HJ, Ren Y. Streptococcus mutans adhesion force sensing in multi-species oral biofilms. NPJ Biofilms Microbiomes. 2020;24;6(1):25. doi: https://doi.org/10.1038/s41522-020-0135-0
Gad MM, Abualsaud R, Khan SQ. Hydrophobicity of denture base resins: a systematic review and meta-analysis. J Int Soc Prev Community Dent. 2022;8;12(2):139-59. doi: 10.4103/jispcd.JISPCD_213_21
Ribeiro AB, Tinelli BM, Clemente LM, Poker BC, Oliveira VC, Watanabe E, et al. Effect of hygiene protocols on the mechanical and physical properties of two 3d-printed denture resins characterized by extrinsic pigmentation as well as the mixed biofilm formed on the surface. Antibiotics. 2023;12(11):1630. doi: https://doi.org/10.3390/antibiotics12111630
Zidan S, Silikas N, Haider J, Yates J. Long-term sorption and solubility of zirconia-impregnated pmma nanocomposite in water and artificial saliva. Materials (Basel). 2020;13(17):3732. doi: 10.3390/ma13173732
Ururahy MS, Curylofo-Zotti FA, Galo R, Nogueira LF, Ramos AP, et al. Wettability and surface morphology of eroded dentin treated with chitosan. Arch Oral Biol. 2017;75:68-73. doi: 10.1016/j.archoralbio.2016.11.017
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Applied Oral Science

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.