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Abstract

Comparative analysis of hydrophobicity and dentin 
adhesion ability in Candida albicans strains

Adhesion to dentin is a first step for a successful microbial root canal colonization. Cell hydrophobicity seems 
to have some influence in the Candida species adhesion to surfaces. Objective: to measure cell surface 
hydrophobicity and to investigate the adherence ability to human dentin among Candida albicans strains 
isolated from root canal and lingual dorsum via an in vitro study. Methodology: adhesion was quantified 
in function of dentin area covered by blastospores and/or hyphae presence detected by epifluorescence 
microscope. Cell surface hydrophobicity was estimated by assessing the percentage migration of cells from 
an aqueous phase to a hydrocarbon phase. Contact angles were measured by the sessile drop technique 
on the dentin surface using a contact angle measurements apparatus. We also examined the correlation 
between adhesion ability and hydrophobicity. Results: although there was some intra-species variation in 
cell surface hydrophobicity, most isolates were characterized by moderate hydrophobicity. There was no 
significant difference in this parameter when the isolation niche was considered. Both root canal and lingual 
dorsum yeasts were able to adhere to dentin. No association was found between the strains’ site of isolation 
and adhesion. Moreover, cell surface hydrophobicity and adhesion ability were not correlated. Conclusion: 
although hydrophobicity can influence Candida albicans virulence in many ways, this study suggests that 
this parameter by itself was not a good predictor of adhesion to dentin.
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Introduction

Endodontic diseases are mainly of microbial 

origin. Instead of being driven by a single bacterial 

or fungal species, the disease progresses through 

an orchestrated collaboration of a community of 

microorganisms, all of them commonly present in the 

commensal oral microbiome.1-4

Candida albicans and, to a lesser extent, other 

opportunistic yeast species are commonly found in 

the oral cavities of both adults and children, with the 

reported prevalence ranging from 15 to 75%.5-7 These 

microorganisms can be isolated from different oral 

sites, including the tongue, cheeks, palatal mucosa, 

caries, restorative materials, dentures, periodontal 

tissues, and even root canals.8-12

Although previous studies11,13 reported a prevalence 

of C. albicans in endodontic infections ranging from 

0.5% to 55%, the involvement of yeast species in 

periapical disease remains uncertain. The versatility 

of these yeasts in adapting to diverse environmental 

conditions, adhering to surfaces such as dentin and 

root filling materials, secreting hydrolytic enzymes, 

undergoing morphological transitions, and forming 

biofilms, as well as their ability to evade host defenses, 

suggests that they can act as opportunistic endodontic 

pathogens.14

The relative cell surface hydrophobicity (CSH) of 

C. albicans and other opportunistic yeast species is 

closely associated with the initial colonization of host 

surfaces and plays a significant complementary role 

in regulating these early events.15 Previous studies16-18 

have investigated whether a correlation exists between 

CSH and the adhesion of Candida spp. to buccal 

epithelial cells and inert polymeric surfaces such as 

denture prostheses.

The relationship between CSH and adhesion has 

been extensively examined across different substrates 

and among different C. albicans strains.19-21 However, 

there is a notable lack of information regarding the 

hydrophobicity profile of C. albicans isolated from 

endodontic infections and whether this feature can 

affect their adhesion to dentin. Therefore, this in 

vitro study sought to assess hydrophobicity levels in 

different root canal strains and clinical isolates derived 

from the lingual dorsum and their dentinal adhesion 

ability.

Methodology

Candida albicans isolates and growth conditions 
A total of 32 clinical C. albicans isolates were tested 

for CSH. Sixteen of these strains were previously 

isolated from the lingual dorsum and 16 from necrotic 

root canals. The Research Ethics Committee of UFMG 

approved the protocol describing the specimen 

collection procedure of this study.

The species was identified using the standard 

methods of Yarrow, the taxonomic keys of Kurtzmann 

and Fell22 (1998), and the polymerase chain reaction 

(PCR) as previously described by Miranda, et al.11 

(2009).

For the dentin adhesion assays, we randomly 

selected six C. albicans isolates from each niche that 

exhibited the lowest and highest hydrophobicity levels.

Cell surface hydrophobicity assay 
The CSH assay was performed using the microbial 

adhesion to hydrocarbon (MATH) test proposed by 

Rosenberg, Gutnick and Rosenberg23 (1980) and 

adapted for yeasts. First, C.  albicans isolates were 

grown in 0.34% yeast nitrogen base medium (Difco 

Laboratories, Detroit, MI, USA) supplemented with 250 

mmol L-1 glucose for 24 h at 37 °C. After this period, 

one colony of each strain was resuspended in 2 mL 

KCl buffer (2 mmol L-1 KH2PO4, 5 mmol L-1 KCl, 1 mmol 

L-1 CaCl2, pH 6.8) and centrifuged twice at 5,000 rpm 

for 10 min at 4 °C. Yeast cells were then resuspended 

in the same buffer to yield an optical density of 0.3 

(ODbefore) at 660 nm, which corresponds to 1x107 cells/

mL-1. 

For each strain tested, 2.5 mL of the suspension 

was added to two glass tubes (one test tube and one 

control tube). The microbial suspension was briefly 

overlaid with 0.5 mL of n-octane. The test and the 

control tubes were placed in a water bath at 37 °C for 

10 min, removed, vortex mixed for 30 s, and returned 

to the water bath for an additional 30 min to allow 

separation of the immiscible n-octane and aqueous 

phase. The lower aqueous phase of the sample was 

carefully removed and transferred to a clean test tube 

(Figure 1A). Absorbance was measured at 660 nm 

(ODafter) after vortex mixing and CSH was calculated 

using the formula: 

Relative hydrophobicity (%) = [1- (ODbefore/ODafter)] 

x 100.

Suspensions without n-octane were used as 
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negative controls. The assays were conducted on three 

separated occasions with duplicate measurements on 

each occasion.

Dentin surfaces
We used non-carious third molars in this study. 

The surrounding enamel was removed with a high-

speed industrial cutting instrument under copious 

water irrigation. Dentin discs (approximately 1.2 

mm thick and 5 mm in diameter) were cut just 

near the occlusal-dentinoenamel junction using a 

rotary diamond saw (Isomet, Buehler, Lake Bluff, 

NY), providing discs that were ground on both sides 

(Figure 1B). Only one dentin disc was prepared per 

tooth. Complete removal of enamel was verified under 

a microscope (SZTP; Olympus Optical Co., Tokyo, 

Japan) at 15× magnification. The discs were ground 

with wet sandpaper (#400 to #1200 grit) to create 

smooth surfaces and to reduce the thickness of the 

discs to 1.0 mm measured with a micrometer (Miltex, 

Tuttlingen, Germany). This procedure created a smear 

layer on all surfaces of the discs. Standardization of 

each sample was confirmed by calculating the total 

surface area using the Image Pro-Plus 6.2 software 

(Media Cybernetics, Silver Spring, MD, USA).

Dentin contact angle measurement
The sessile drop method was used to measure the 

hydrophobicity of the dentin surface. Contact angles 

were determined using a goniometer (Drop Shape 

Analysis System, DSA100, Kruess GmbH, Hamburg, 

Germany) equipped with a stainless-steel microsyringe 

needle. For static contact angle measurements, the 

microsyringe needle was positioned at 0.2 mm from the 

surface of the dentin sample. The volume of drop used 

was 1.5 μL and the distance between the needle deposit 

and standby position was 1.0 mm. After dispensing, the 

drop shape was monitored with a digital camera for 10 

Figure 1-Mean hydrophobicity of Candida albicans strains isolated from the lingual dorsum and root canal. 1A: MATH assay for estimation 
of C. albicans hydrophobicity. 1B: An ex vivo assay to study C. albicans dentinal adhesion ability by using a fluorescence microscopy 
technique. 1C: The sessile drop method for measuring the hydrophobicity of the dentin surface.
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s at 18 frames per second and the contact angle was 

recorded. The goniometer measures the angle formed 

between the tangent line to the surface of the droplet 

at the contact point and the solid surface. (Figure 1C).

The measurements were performed at room 

temperature using three different liquids: water, 

formamide, and 1-bromonaphthalene. Each assay was 

performed in triplicate and at least 10 contact angles 

were measured per sample.

Adhesion assay
The dentin discs prepared as indicated in item 2.3 

were placed in a 24-well plate. Yeast cell suspensions 

were grown in Sabouraud dextrose broth (Sigma-

Aldrich Corporation, San Luis, USA) overnight at 37 °C 

and the OD600 was adjusted to 1.0 (107 cells/mL). Then, 

2 mL of the suspension was added to each well. After 

3 h of incubation in a shaker at 100 rpm and 37 °C, 

each well was washed twice with ultrapure water by 

carefully rinsing only the liquid over the disc. After the 

last wash, the liquid was completely removed. The 

discs were then stained with calcofluor white (Molecular 

Probes, Eugene, USA) for 5 min and observed under 

an epifluorescence microscope (Olympus IX 70, Tokyo, 

Japan). A total of 25 fields per sample were randomly 

captured with a video camera connected to the 

microscope and recorded by a computer. The Image 

Pro-Plus image analysis system was used to quantify 

the adhesion area (Figure 1B). Each experiment was 

repeated six times.

Statistical analysis 
Statistical analysis was performed using GraphPad 

Prism 8 (GraphPad Software Incorporation, San Diego, 

USA). Differences in relative CSH value and the dentin 

adhesion area between the C. albicans groups were 

evaluated using the Kruskal-Wallis test. Spearman’s 

rank correlation was used to test the correlation 

between CSH value and adhesion ability. Statistically 

significant differences were considered when p<0.05. 

Results

Cell surface hydrophobicity of C. albicans 
isolates

The CSH values of C. albicans isolates are presented 

in Figure 2. Regardless of the site of isolation, CSH was 

variable among the strains studied. Lingual dorsum 

isolates showed a mean relative CSH of 35.99%, 

ranging from 3.66 to 67.67%. The mean CSH of yeasts 

Figure 2- Mean area of adhesion of Candida albicans strains 
isolated from the lingual dorsum and root canal to the dentin 
substrate.

Figure 3- Spearman correlation analysis between hydrophobicity 
and dentin adhesion capacity of Candida albicans strains isolated 
from the lingual dorsum.
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isolated from root canals was 31.61%, ranging from 

6.44 to 56.33%. There was no significant difference 

in mean CSH values between isolation sites (p>0.05). 

Based on this hydrophobicity pattern, most isolates 

were characterized as moderately hydrophobic.

Dentin adhesion
The adhesion areas of lingual dorsum isolates 

ranged from 0.1212 to 0.2518 cm2/cm2, while the 

areas of root canal isolates ranged from 0.1159 to 

0.3533 cm2/cm2 (Figure 3). There was no significant 

difference in the ability to adhere to dentin between 

isolation sites (p>0.05).

Correlation analysis of the results of adhesion 

to the dentin surface and relative CSH revealed a 

positive but nonsignificant correlation between these 

two parameters among lingual dorsum C. albicans 

(r=0.1429, p=0.8028), as indicated in Figure 4A. 

Among root canal isolates, there was a negative 

correlation between hydrophobicity and adhesion but it 

was not significant (r=-0.7714, p=0.1028) (Figure 4B).

Figure 5 illustrates the adhesion of C. albicans to 

dentin fragments. The micrographs revealed that C. 

albicans isolates were preferentially adhered to dentin 

by hyphae morphology. 

Dentin surface hydrophobicity parameters 
The contact angles formed by the three liquids 

(water, formamide, and 1-bromonaphthalene) on 

dentin surfaces are presented in Table 1. The values 

indicate a similar interaction of dentin with each of 

the three liquids tested. The water contact angle is 

an indicator of surface hydrophobicity. In this case, 

the water contact angles are lower than 50o and the 

Figure 4- Spearman correlation analysis between hydrophobicity and dentin adhesion capacity of Candida albicans strains isolated from 
lingual dorsum(A) and root canal (B).
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dentin surface can therefore be considered hydrophilic. 

Discussion

For many decades, microbiologists have focused 

their attention on the involvement of bacteria in 

endodontic diseases. However, in recent years, there 

has been increasing interest in fungal microorganisms. 

It is evident that fungi contribute to a subset of root 

canal infections,4,10,11 although the existing body of 

evidence remains relatively modest. The prerequisite 

for the onset of dentinal tubule invasion by C. 

albicans is the adhesion of the yeast to dentin.14 

This adhesion process involves various non-specific 

factors, including attractive and repulsive forces such 

as van der Waals forces, hydrophobic interactions, and 

Brownian movement forces. Additionally, electrostatic 

interactions play a pivotal role in facilitating initial 

adherence.24 In this study, we sought to quantify 

cellular hydrophobicity to establish the relationship 

between the adhesion capacity of oral C. albicans 

isolates and the characteristics of their cell surfaces. 

We selected the MATH method as originally proposed 

by Rosenberg, Gutnick and Rosenberg23 (1980) for 

this purpose because of its practicality and ease of 

use within the scope of our research.

Previous studies have proposed numerical 

correlations between the percentage of cells adhering 

to hydrocarbon and the hydrophobicity levels 

of microorganisms.25,26 Within this context, it 

was established that microbial strains with high 

hydrophobicity show adhesion percentages equal to 

or exceeding 50%. Samples with readings between 

20% and 50% are characterized as moderately 

hydrophobic, while cell surfaces with hydrophilic 

traits show percentages of 20% or less. By employing 

these benchmarks, our results reveal that most 

C. albicans strains isolated from both the lingual 

dorsum and the necrotic root canal are characterized 

by moderate hydrophobicity. According to Hazen 

and Hazen27 (1988), the incubation temperature 

applied in our study facilitated the observation of 

hydrophobic behavior of the microorganisms. Souza, 

et al.28 (2009) suggested that the modulation of C. 

albicans hydrophobicity by temperature may lead to 

misconceptions regarding this parameter. However, 

most CSH studies29,30 recommend a temperature of 

37  °C, as employed in our study, to be the most 

suitable for evaluating hydrophobicity in dimorphic 

fungi.

As highlighted by Lai, et al.31 (2022), individual 

variations in the microbial growth curve might have 

influenced the hydrophobicity values obtained in 

the present study. After 24 h of incubation, most 

C. albicans strains tested were in the exponential 

phase of microbial growth. At this stage, the protein-

mannosylated cell wall fibrils increase in length 

and concentration, promoting the expression of 

hydrophobic behavior. In contrast, yeasts in the 

stationary phase show a hydrophilic profile. 

The increased formation of germ tubes, pseudo-

hyphae, and hyphae by oral yeasts, facilitated by the 

Comparative analysis of hydrophobicity and dentin adhesion ability in Candida albicans strains

Figure 5- Micrographs of Candida albicans cells stained with calcofluor attached on dentin fragments with scale bars of 50 μm.

Substrate Degree of contact angle

Water (θw) Formamide (θf) 1-Bromonaphthalene (θb)

Dentin 39°±4° 42°±3° 45°±3°

Table 1- Contact angles of water (θw), formamide (θf) and 1-bromonaphthalene (θb) on the dentin surface.
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nitrogen-containing culture medium, may also be 

associated with the inherent hydrophobicity of most 

strains investigated. Studies31-34 reported variation in 

the hydrophobic profile of C. albicans yeasts according 

to cellular morphology, with pseudo-hyphae exhibiting 

variable hydrophobicity, while true hyphae manifest 

high hydrophobicity. Since pleomorphism is inherently 

associated with the colonization capacity of C. 

albicans in the dentin environment, we expected that 

root strains would display hydrophobic behavior, as 

observed for most yeasts isolated from this niche.15-18 

The findings of Hazen and Hazen27 (1988) indicate 

a direct correlation between hydrophobicity and the 

pathogenic potential of the sample suggest a significant 

role for C. albicans, with a high adhesion percentage 

to n-octane, isolated from root canals, in the initiation 

and progression of primary apical periodontitis. These 

authors also highlight that the transient expression of 

hydrophobic behavior under specific environmental 

conditions may enable yeasts within the endogenous 

microbiota to colonize alternative sites, initiating an 

infectious process. This implies that strains isolated 

from the lingual dorsum, whose adhesion percentage 

to hydrocarbons exceeds 20%, possess the potential 

for pulp colonization.

In this study, we also assessed the water affinity 

characteristics of dentin using the contact angle 

method. Liber-Kneć and Łagan35 (2021) suggested 

contact angle measurement to be the most suitable 

approach for evaluating the hydrophobicity of 

substrates in microbial adhesion assays. Following 

previously established parameters, the results 

indicated that dentin, with a contact angle of 39°, 

showed a hydrophilic behavior. Similar results were 

reported by Henriques, Azeredo and Oliveira36 

(2004) for substrates such as hydroxyapatite and 

acrylic. Differences in contact angle values are due to 

variations in surface topography, the surface tension of 

the liquid used in the experiments, substrate surface 

energy, and the level of interaction between the liquid 

and the solid.37

Since CSH can affect both the adhesion and 

the pathogenic processes of C. albicans,19,30,38 

adhesion assays were conducted using C. albicans 

strains obtained from the lingual dorsum and the 

root canal, which exhibited hydrophilic behavior 

(adhesion percentage to n-octane < 20%) and high 

hydrophobicity (adhesion percentage to n-octane > 

50%), respectively. To the best of our knowledge, 

there is no report evaluating the CSH of root canal 

C. albicans isolates and their dentin adhesion ability. 

Regardless of the primary isolation site, both 

hydrophilic and hydrophobic isolates were able 

to adhere to dentin. However, contrary to the 

findings of Panagoda, Ellepola and Samaranayake39 

(1998), we observed no correlation between cellular 

hydrophobicity and microbial adhesion capacity. Raut, 

Rathod and Karuppayil18 (2010) also did not find any 

correlation between these parameters. 

In our study, the effective adhesion of yeast to 

dentin (even without the addition of saliva and within 

a short incubation period) suggests that saliva may 

play a potential enhancing role but is not determinant 

for adhesion, as also reported by Henriques, Azeredo 

and Oliveira36 (2004). Saliva contributes to reducing 

the electrostatic repulsion force between the yeast 

and the substrate by absorbing mucins, secretory 

IgA, and other proteins. Nevertheless, Gunaratnam, et 

al.40 (2021) found that all adhesion parameters were 

enhanced on the salivary pellicle-covered compared 

to the uncovered enamel.

Our study also showed intraspecific variations in the 

adhesion capacity of C. albicans strains.40,41 According 

to Suchodolski, et al.26 (2020), genes encoding 

adhesion molecules are not uniformly expressed 

across all C. albicans strains. This gene expression is 

individually influenced by changes in pH, carbon, and 

nitrogen supply.

Although this study was not focused on examining 

bacterial attachment, it is important to mention that 

in clinical settings, C. albicans commonly coexists 

with bacteria in dental caries and in the root canals 

infections. Some investigations42,43 indicate an 

increased prevalence of S. mutans in oral biofilms 

at sites where C. albicans is also present. The 

biofilm matrix is thereby identified as a key factor 

for co-aggregation between S. mutans and C. 

albicans. Insoluble and soluble glucans are the main 

components of extracellular polysaccharides (EPS) 

and are essential for forming the core of the biofilm 

matrix.43 Furthermore, S. mutans glucosyltransferases 

exoenzymes expression is induced by the presence 

of C. albicans in mixed-species biofilms. The matrix 

facilitates accumulation and adherence to the tooth 

surface, thus increasing the virulence of S. mutans 

and C. albicans for its host.42

Interestingly, E. faecalis has been shown to 

incorporate itself into C. albicans biofilms, adhering to 

Miranda TT, Rodrigues L, Rosa CA, Corrêa AJr
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both yeast and hyphal forms. Bacteria preferentially 

adhere to hyphal as opposed to yeast cells. This 

interaction may favor resistance to treatment through 

enhancing dentinal tubule penetration. At molecular 

levels, E. faecalis downregulated key genes involved 

in C. albicans virulence, whilst C. albicans upregulated 

genes involved in E. faecalis adhesion and biofilm 

formation.44

Despite differences in hydrophobicity levels, 

in our study, all C. albicans isolates demonstrated 

some adhesion capacity. However, the behavior of 

these microorganisms in dentin should be further 

investigated, particularly using in vivo experiments. 

Under these conditions and in the presence of other 

microbial groups and oral fluids, C. albicans may 

show distinct morphological responses, with variable 

implications for the pathogenesis of endodontic and 

periradicular infections.

Conclusion

Hydrophobicity is not a pivotal factor influencing 

the adhesion of oral Candida albicans strains to dentin. 

Further studies are necessary to better understand the 

mechanisms underlying the adhesion of C. albicans 

to dentin.
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