Focos calor e queimadas na América do Sul: evidências para o período de 2002-2018

Autores

DOI:

https://doi.org/10.1590/1980-53575422wlgi

Palavras-chave:

Atividade econômica, Foresta amazônica, Focos de calor, Incêndios florestais

Resumo

O presente artigo discute os fatores relacionados à ocorrência dos focos de calor na América do Sul e na Amazônia Internacional a partir de um painel de dados por países, entre os anos de 2002 a 2018. Para tanto, realizou-se uma extensa revisão de literatura dos trabalhos empíricos desta área a fim de elaborar um modelo abrangente, contendo variáveis consideradas relevantes.
As estimativas via modelo binomial negativo apontaram que a relação entre os focos de calor e o Produto Interno Bruto per capita ou entre focos de calor e Índice de Desenvolvimento Humano se dá na forma de “U-normal”, ou seja, estes indicadores podem acelerar a atividade dos focos de calor na região sul-americana. Ademais, a cobertura florestal e o desemprego induzem a atividade do fogo na América do Sul e no recorte dos países Amazônicos. A partir desses resultados, são sugeridas políticas públicas para o combate e a redução dos focos de calor no continente sul-americano.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Agee, James K. 1995. Fire ecology of pacific northwest forests. Washington, DC, USA: Island Press.

Alcasena, Fermín J., Michele Salis, Nicholas J. Nauslar, A. Eduardo Aguinaga, e Cristina Vega-García. 2016. “Quantifying Economic Losses from Wildfires in Black Pine Afforestations of Northern Spain”. Forest Policy and Economics 73: 153–67.

Andersen, Lauren M., e Margaret M. Sugg. 2019. “Geographic Multi-Criteria Evaluation and Validation: A Case Study of Wildfire Vulnerability in Western North Carolina, USA Following the 2016 Wildfires”. International Journal of Disaster Risk Reduction: IJDRR 39 (101123): 101123.

Argañaraz, Juan P., Gregorio Gavier Pizarro, Marcelo Zak, Marcos A. Landi, e Laura M. Bellis. 2015. “Human and Biophysical Drivers of Fires in Semiarid Chaco Mountains of Central Argentina”. The Science of the Total Environment 520: 1–12.

Aznar-Sánchez, José, Luis Belmonte-Ureña, María López-Serrano, e Juan Velasco-Muñoz. 2018. “Forest ecosystem services: An analysis of worldwide research”. Forests 9 (8): 453–71.

Baltagi, Badi H. 2005. Econometric Analysis of Panel Data. 3o ed. Chichester, England: John Wiley & Sons.

Beneduzi, Anelise, Luiz Gustavo dos Anjos Borges, Samuel Mazzinghy Alvarenga, Helisson Faoro, Emanuel Maltempi de Souza, Luciano Kayser Vargas, e Luciane Maria Pereira Passaglia. 2019. “Distinct Grazing Pressure Loads Generate Different Impacts on Bacterial Community in a Long-Term Experiment in Pampa Biome”.

Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment 137: 167–77.

Boubeta, Miguel, María José Lombardía, Manuel Francisco Marey-Pérez, e Domingo Morales. 2015. “Prediction of Forest Fires Occurrences with Area-Level Poisson Mixed Models”. Journal of Environmental Management 154: 151–58.

Boubeta, Miguel, María José Lombardía, Manuel Marey-Pérez, e Domingo Morales. 2019. “Poisson Mixed Models for Predicting Number of Fires”. International Journal of Wildland Fire 28 (3): 237–53.

Cameron, A. Colin, e Pravin K. Trivedi. 2009. Microeconometrics Using Stata. Filadélfia, PA, USA: Stata Press.

Cardille, Jeffrey A., Stephen J. Ventura, e Monica G. Turner. 2001. “Environmental and Social Factors Influencing Wildfires in the Upper Midwest, United States”. Ecological Applications: A Publication of the Ecological Society of America 11 (1): 111–27.

Catry, Filipe X., Francisco C. Rego, Fernando L. Bação, e Francisco Moreira. 2009. “Modeling and Mapping Wildfire Ignition Risk in Portugal”. International Journal of Wildland Fire 18 (8): 921–31.

Chen, Xuan, Barry K. Goodwin, e Jeffrey P. Prestemon. 2014. “Is Timber Insurable? A Study of Wildfire Risks in the U.S. Forest Sector Using Spatio‐temporal Models”. American Journal of Agricultural Economics 96 (1): 213–31.

Costafreda-Aumedes, Sergi, Carles Comas, e Cristina Vega-Garcia. 2017. “Human Caused Fire Occurrence Modelling in Perspective: A Review”. International Journal of Wildland Fire 26 (12): 983–98.

Dodds, Walter K., Lindsey Bruckerhoff, Darold Batzer, Anne Schechner, Casey Pennock, Elizabeth Renner, Flavia Tromboni, Kari Bigham, e Samantha Grieger. 2019. “The Freshwater Biome Gradient Framework:Predicting Macroscale Properties Based on Latitude, Altitude, and Precipitation”. Ecosphere (Washington, D.C) 10 (7): 1–33.

Elia, M., V. Giannico, R. Lafortezza, e G. Sanesi. 2019. “Modeling Fire Ignition Patterns in Mediterranean Urban Interfaces”. Stochastic Environmental Research and Risk Assessment: Research Journal 33 (1): 169–81.

EMBRAPA. 2020. “Aqua Project Science”. Acesso em: 01/03/2021. Disponível em: http://www.fao.org/faostat/en/#data.

FAO. 2020. “Data”. Acesso em: 03/03/2021. Disponível em: http://www.fao.org/faostat/en/#data.

Ferreira, Leonardo N., Didier A. Vega-Oliveros, Liang Zhao, Manoel F. Cardoso, e Elbert E. N. Macau. 2020. “Global Fire Season Severity Analysis and Forecasting”. Computers & Geosciences 134 (104339): 104339.

Fonseca-Morello, Thiago, Rossano Marchetti Ramos, Liana O. Anderson, Nathan Owen, Thais Michele Rosan,

e Lara Steil. 2020. “Predicting Fires for Policy Making: Improving Accuracy of Fire Brigade Allocation in the Brazilian Amazon”. Ecological Economics: The Journal of the International Society for Ecological Economics 169 (106501): 106501.

González-Olabarria, José Ramón, Blas Mola-Yudego, e Lluis Coll. 2015. “Different Factors for Different Causes: Analysis of the Spatial Aggregations of Fire Ignitions in Catalonia (Spain): Spatial Aggregations of Fire Ignitions in Catalonia”. Risk Analysis: An Official Publication of the Society for Risk Analysis 35 (7): 1197–209.

Grossman, G. M., e A. B. Krueger. 1991. “Environmental impacts of a North American free trade agreement”.

National bureau of Economic Research Working Paper – NbER (3914), 1–57.

Grossman, G. M., e A. B. Krueger. 1995. “Economic growth and the environment”. The Quarterly Journal of Economics 110 (2): 353–77.

Guo, Futao, Selvaraj Selvalakshmi, Fangfang Lin, Guangyu Wang, Wenhui Wang, Zhangwen Su, e Aiqin Liu. 2016a. “Geospatial Information on Geographical and Human Factors Improved Anthropogenic Fire Occurrence Modeling in the Chinese Boreal Forest”. Canadian Journal of Forest Research 46 (4): 582–94.

Guo, Futao, Guangyu Wang, Zhangwen Su, Huiling Liang, Wenhui Wang, Fangfang Lin, e Aiqin Liu. 2016b. “What Drives Forest Fire in Fujian, China? Evidence from Logistic Regression and Random Forests”. International Journal of Wildland Fire 25 (5): 505–19.

Hausman, Jerry, Bronwyn H. Hall, e Zvi Griliches. 1984. “Econometric models for count data with an application to the patents-R&D relationship”. Econometrica: Journal of the Econometric Society 52 (4): 909–38.

ILO. 2020. “Statistics and Databases”. Acesso em: 05/03/2021. Disponível em: https://www.ilo.org/global/statistics-and-databases/lang--en/index.htm.

IMF. 2020. “IMF Data”. Acesso em 06/03/2021. Disponível em: https://www.imf.org/en/Data.

INPE. 2021. “Programa Queimadas”. Acesso em 05/02/2021. Disponível em: http://queimadas.dgi.inpe.br//queimadas/portal.

Juan, P., J. Mateu, e M. Saez. 2012. “Pinpointing Spatio-Temporal Interactions in Wildfire Patterns”. Stochastic Environmental Research and Risk Assessment: Research Journal 26 (8): 1131–150.

Kuznets, S. 1955. “Economic growth and income inequality”. The American Economic Review 45 (1): 1–30.

Mann, Michael L., Enric Batllori, Max A. Moritz, Eric K. Waller, Peter Berck, Alan L. Flint, Lorraine E. Flint, e Emmalee Dolfi. 2016. “Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California”. PloS One 11 (4): 1–21.

Martínez-Fernández, J., E. Chuvieco, e N. Koutsias. 2013. “Modelling Long-Term Fire Occurrence Factors in Spain by Accounting for Local Variations with Geographically Weighted Regression”. Natural Hazards and Earth System Sciences 13 (2): 311–27.

Michetti, Melania, e Mehmet Pinar. 2019. “Forest Fires across Italian Regions and Implications for Climate Change: A Panel Data Analysis”. Environmental & Resource Economics 72 (1): 207–46.

Murthy, Karthik K., Samir Kumar Sinha, Rahul Kaul, e Srinivas Vaidyanathan. 2019. “A Fine-Scale State-Space Model to Understand Drivers of Forest Fires in the Himalayan Foothills”. Forest Ecology and Management 432: 902–11.

Narayanaraj, Ganapathy, e Michael C. Wimberly. 2012. “Influences of Forest Roads on the Spatial Patterns of Human- and Lightning-Caused Wildfire Ignitions”. Applied Geography (Sevenoaks, England) 32 (2): 878–88.

Nunes, A. N., L. Lourenço, e A. C. Castro Meira. 2016. “Exploring Spatial Patterns and Drivers of Forest

Fires in Portugal (1980–2014)”. The Science of the Total Environment 573: 1190–202.

Oliveira, Sandra, Friderike Oehler, Jesús San-Miguel-Ayanz, Andrea Camia, e José M. C. Pereira. 2012. “Modeling Spatial Patterns of Fire Occurrence in Mediterranean Europe Using Multiple Regression and Random Forest”. Forest Ecology and Management 275: 117–29.

Oliveira, Sandra, José M. C. Pereira, Jesús San-Miguel-Ayanz, e Luciano Lourenço. 2014. “Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression”. Applied geography (Sevenoaks, England) 51: 143–57.

Oliveira, Glauber Meneses Barboza de, Ivo Wesley Gomes da Silva, Anna Maria da Cruz Ferreira Evaristo, Maria Carolina de Azevedo Serpa, Amanda Noeli Silva Campos, Valeria Dutra, Luciano Nakazato, Daniel Moura de Aguiar, Marcelo Bahia Labruna, e Mauricio Claudio Horta. 2020. “Tick-Borne Pathogens in Dogs, Wild Small Mammals and Their Ectoparasites in the Semi-Arid Caatinga Biome, Northeastern Brazil”.

Ticks and Tick-Borne Diseases 11 (4): 101409.

Pindyck, Robert S., and Daniel L. Rubinfeld. 1997. Econometric Models and Economic Forecasts. 4th ed. New York, NY: McGraw-Hill.

Prestemon, Jeffrey P., David T. Butry, María L. Chas-Amil, e Julia M. Touza. 2019. “Net Reductions or Spatiotemporal Displacement of Intentional Wildfires in Response to Arrests? Evidence from Spain”. International Journal of Wildland Fire 28 (6): 397–411.

Rappaport, Danielle I., Douglas C. Morton, Marcos Longo, Michael Keller, Ralph Dubayah, e Maiza Nara dos-Santos. 2018. “Quantifying long-term changes in carbon stocks and forest structure from Amazon Forest degradation”. Environmental Research Letters 13 (6): 065013.

Reboita, Michelle Simões, Nisia Krusche, Tércio Ambrizzi, e Rosmeri Porfírio da Rocha. 2015. “Entendendo o tempo e o clima na América do Sul”. Terrae didatica 8 (1): 34–50.

Rezende, Vanessa Leite, Vanessa Pontara, Marcelo Leandro Bueno, Eduardo van den Berg, e Ary Teixeira de Oliveira-Filho. 2020. “Climate and Evolutionary History Define the Phylogenetic Diversity of Vegetation Types in the Central Region of South America”. Oecologia 192 (1): 191–200.

Rodrigues, M., J. de la Riva, e S. Fotheringham. 2014. “Modeling the Spatial Variation of the Explanatory Factors of Human-Caused Wildfires in Spain Using Geographically Weighted Logistic Regression”. Applied Geography (Sevenoaks, England) 48: 52–63.

Serra, Laura, Pablo Juan, Diego Varga, Jorge Mateu, e Marc Saez. 2013. “Spatial Pattern Modelling of Wildfires in Catalonia, Spain 2004–2008”. Environmental Modelling & Software: With Environment Data News 40: 235–44.

Song, Chao, Mei-Po Kwan, Weiguo Song, e Jiping Zhu. 2017. “A comparison between spatial econometric models and random forest for modeling fire occurrence”. Sustainability 9 (5): 819–39.

Sturtevant, Brian R., e David T. Cleland. 2007. “Human and Biophysical Factors Influencing Modern Fire Disturbance in Northern Wisconsin”. International Journal of Wildland Fire 16 (4): 398–413.

Su, Zhangwen, Haiqing Hu, Mulualem Tigabu, Guangyu Wang, Aicong Zeng, e Futao Guo. 2019a. “Geographically Weighted Negative Binomial Regression Model Predicts Wildfire Occurrence in the Great

Xing’an Mountains Better than Negative Binomial Model”. Forests 10 (5): 377–425.

Su, Zhangwen, Mulualem Tigabu, Qianqian Cao, Guangyu Wang, Haiqing Hu, e Futao Guo. 2019b. “Comparative Analysis of Spatial Variation in Forest Fire Drivers between Boreal and Subtropical Ecosystems in China”. Forest Ecology and Management 454 (117669): 117669.

Tasker, Kaitlin A., e Eugenio Y. Arima. 2016. “Fire Regimes in Amazonia: The Relative Roles of Policy and Precipitation”. Anthropocene 14: 46–57. The World Bank. 2020. “World Development Indicators”. Acesso em 06/03/2021. Disponível em: https://

databank.worldbank.org/source/world-development-indicators#.

UNDP. 2020. “Human Development Reports”. Acesso em 29/06/2022. Disponível em: http://hdr.undp.org/.

Vadrevu, Krishna P., Anuradha Eaturu, e K. V. S. Badarinath. 2006. “Spatial Distribution of Forest Fires and Controlling Factors in Andhra Pradesh, India Using SPOT Satellite Datasets”. Environmental Monitoring

and Assessment 123 (1–3): 75–96.

Vasconcelos, Maria José Perestrello de, Sara Silva, Margarida Tomé, Margarida Alvim, e José Miguel Cardoso Pereira. 2001. “Spatial Prediction of Fire Ignition Probabilities: Comparing Logistic Regression and Neural Networks”. Photogrammetric Engineering and Remote Sensing 67 (1): 73–81.

Vega-Nieva, Daniel Jose, Maria Guadalupe Nava-Miranda, Eric Calleros-Flores, Pablito Marcelo López-Serrano, Jaime Briseño-Reyes, Carlos López-Sánchez, Jose Javier Corral-Rivas, et al. 2019. “Temporal Patterns of Active Fire Density and Its Relationship with a Satellite Fuel Greenness Index by Vegetation Type and Region in Mexico during 2003–2014”. Fire Ecology 15 (1): 1–19.

White, B. L. A. 2018. “Satellite Detection of Wildland Fires in South America”. Floresta 49 (4): 851-58.

Wooldridge, Jeffrey M. 2010. Econometric analysis of cross section and panel data. 2o ed. Londres, England: MIT Press.

Xiao, Yundan, Xiongqing Zhang, e Ping Ji. 2015. “Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China”. PloS One 10 (3): e0120621.

Zhang, Yang, Samsung Lim, e Jason John Sharples. 2016. “Modelling Spatial Patterns of Wildfire Occurrence in South-Eastern Australia”. Geomatics Natural Hazards and Risk 7 (6): 1800–815.

Zhang, Yang, e Samsung Lim. 2019. “Drivers of Wildfire Occurrence Patterns in the Inland Riverine Environment of New South Wales, Australia”. Forests 10 (6): 524–40.

Downloads

Publicado

28-06-2024

Edição

Seção

Artigo

Como Citar

Sousa, W. L. de ., & Irffi, G. . (2024). Focos calor e queimadas na América do Sul: evidências para o período de 2002-2018. Estudos Econômicos (São Paulo), 54(2), 1-26. https://doi.org/10.1590/1980-53575422wlgi