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Clinical relevance of miR-423-5p levels in chronic obstructive pulmonary
disease patients
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� Relationship of plasma miR-423-5p expression in COPD patients as well as smoking history.
� 9 miRNAs were dysregulated in COPD patients.
� miR-423-5p has potential value as a clinical diagnosis of COPD.
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A B S T R A C T

Objective: This study aimed to examine changes in miRNAs expression profile of COPD patients.
Methods: Thirty-six COPD patients as well as thirty-three healthy volunteers were recruited. Total RNAs were col-
lected from the plasma of each participant. The differentially expressed miRNAs in COPD were screened from the
GEO database. RT-qPCR was carried out to detect miRNA expression.
Results: In total, 9 out of 55 miRNAs were expressed differentially in COPD patients. Confirmed by RT-qPCR vali-
dation, 6 miRNAs increased while 3 miRNAs decreased. Further analysis of miR-423-5p, which has not been
reported in COPD, showed that AUC for the diagnosis of COPD was 0.9651, and miR-423-5p levels was inversely
correlated with the duration of smoking.
Conclusion: The present study demonstrates that miR-423-5p is a potential marker for identifying COPD patients.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD), a common respira-
tory disease, is characterized by continuous respiratory inflammation as
well as airflow restriction, and airflow restriction mostly presents an
irreversible progressive development.1,2 It is reported that the preva-
lence of COPD in adults over 40 years of age is 5‒19% globally,3 causing
a huge social burden. COPD is usually caused by long-term exposure to
harmful gases or small particles and is also associated with genes, airway
hyperresponsiveness, and pulmonary dysplasia.4 Smoking is currently
considered to be the most important pathogenic factor for COPD.5 In
addition, genetic factors such as age growth,6 gender difference,7 and
α-1 antitrypsin deficiency8 are the causes of COPD as well.

The pathogenesis of COPD is complex and has not yet been fully clar-
ified. Previously, the pathogenesis of COPD included inflammatory
response,9 oxidative stress,10 protease imbalance,11 etc. In recent years,
hypotheses such as apoptosis,12 respiratory microbial disorder,13 and
ineffective repair of damaged stem cells14 have further improved the
research on the pathogenesis of COPD. At present, bronchiectasis drugs
such as β2 receptor agonist15 and muscarinic antagonist16 are mainly
used in the clinical treatment of COPD. Anti-inflammatory drugs and
antioxidant drugs are also effective treatment methods. Considering the
high morbidity and mortality, further study of COPD is necessary.

MicroRNA (miRNA) are short-chain non-coding RNA molecules com-
posed of about 22 nucleotides, which can specifically bind to the target
mRNA to inhibit its translation or mediate its degradation, so as to real-
ize the gene regulation at the post-transcriptional level.17 It is estimated
that miRNA regulates about 25% of all human genes.18 Therefore,
miRNA involves a large number of different biological processes, such as
cell proliferation and differentiation, aging, metabolism as well as
inflammation,19-21 thus miRNA plays a huge role in organisms. Studies
have reported that there is a significant imbalance in miRNA in COPD
patients.22,23 Further studies have shown that miRNA can affect lung
development,24 and mediate the generation of inflammation,25 thus
affecting the occurrence and development of COPD. MiR-423 is a rela-
tively conserved miRNA in humans, mice, pigs, cows, and other species.
It can form two mature sequences: miR-423-3p and miR-423-5p. MiR-
423 is closely related to many diseases. For example, miR-423-5p can be
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Table 2
Demographic, clinical and biological data of the COPD patients and healthy
controls in the miRNA screen study.

Clinicopathologic characteristics COPD (n= 36) NC (n= 33) p-value

Male/Female 19/17 21/12 0.3613
Age (years), mean ± SD 58.56 ± 12.40 63.97 ± 11.76 0.0677
BMI (kg/m2), mean ± SD 24.59 ± 3.53 25.92 ± 3.75 0.1351
Family history of COPD 0.2922
No 14 17
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used as a molecular marker to reflect the severity of liver failure.21 MiR-
423-3p promotes cell proliferation, migration, and invasion in endome-
trial cancer,1 liver cancer,13 gastric cancer,22 colorectal cancer23 and
other cell lines and animal models. However, the role of miR-423-3p in
COPD remains unclear.

Therefore, the secondary objective of this study was to select the pro-
filed plasma miRNAs in COPD patients. The primary objective was to
explore the relationship between miR-423-5p and COPD and provide
potential targets for COPD treatment.
Yes 22 16
History of smoke 0.4125
No 15 17
Yes 21 16
FEV1 (%predicted), mean ± SD 52.81 ± 11.14 94.54 ± 8.55 < 0.0001
FEV1/FVC (%), mean ± SD 59.63 ± 10.32 81.79 ± 6.24 < 0.0001
Materials and methods

Patients

Samples were gathered from COPD patients (n = 36) and healthy
volunteers (n = 33) at ChongQing TongLiang people’s Hospital. The
healthy individuals were not smokers. In the morning, 5 mL of median
cubital venous blood was collected on an empty stomach, centrifuged
at -4°C and 2000 r/min for 10 min. Then the serum was separated and
stored in a -70°C refrigerator for further experiments.

The study was approved by ChongQing TongLiang people’s Hospital
(Ethical number 2020‒33). Signed informed consent forms were
obtained from each individual.
RNA isolation

Isolation of RNA from patients’ plasma (200 µL) was performed
using a miRNeasy Serum/Plasma Advanced Kit (Qiagen). Each miRNA
sample had a total volume of 30 µL and was stored at -80°C prior to
cDNA synthesis.
Real-time quantitative polymerase chain reaction (RT-qPCR)

Total RNA was extracted by the TRIzol® reagent (Invitrogen;
Thermo Fisher Scientific, Inc.). Reverse transcription and qPCR were
performed by BlazeTaq One-Step SYBR Green RT-qPCR Kit (with ROX)
(QP071; GeneCopoeia, Inc., USA) on a SEDI Thermo Cycler with Control
Bus Net software package (Wealtec Bioscience Co., Ltd., New Taipei
City, Taiwan). Primers were designed and synthesized by Nanjing Gen-
script Biotech Co., Ltd., (Jianngsu, P. R. China). The results were ana-
lyzed using the 2−ΔΔCt method. Sequences of the primers were shown in
Table 1.
Table 1
Sequences for RT-qPCR primers.

miRNAs Sequences (5’−3’)

miR-22-3p F: ACACTCCAGCTGGGAAGCTGC
R: CTCGCTTCGGCAGCACA

miR-24-3p F: AGCTTTCAGGCGATCTGGAG
R: GTCTCAGGCTTGGTCAGTCC

miR-203a-3p F: CCGGTGAAATGTTTAGGACCACTAG
R: GCCGCGTGAAATGTTTAGG

miR-320a-3p F: TATTCGCACTGGATACGACTCCAGC
R: GTCGTATCCAGTGCAGGGTCCGAGG

miR-320b F: TCCGAAACGGGAGAGTTGG
R: GTGCAGGGTCCGAGGT

miR-100-5p F: ATCATTAAACCCGTAGATCCGAA
R: AATGGTTGTTCTCCACACTCTCTC

miR-423-5p F: ATGGTTCGTGGGTGA
R: GTGCAGGGTCCGAGGT

miR-200b-3p F: GCGGGCTAATACTGCCTGG
R: ATCCAGTGCAGGGTCCGAAA

miR-126-3p F: TATCAGCCAAGAAGGCAGAA
R: CGTGGCGTCTTCCAGAAT

2

Statistical analysis

Each experiment was carried out 3 times. All data were calculated by
GraphPad Prism (version 7, GraphPad Software Inc.), and presented as
mean ± SD. The Student’s t-test was used to contrast two groups’ differ-
ences, then contrast among multiple groups used the Analysis of Vari-
ance (ANOVA) followed by Duncan’s post-hoc test. The correlation
analysis was performed using Pearson’s correlation analysis. The clinical
significance of PAF was analyzed in the plasma by the Receiver Operat-
ing Curve (ROC) using the Area Under the Curve (AUC); p < 0.05 sug-
gested a significant difference.

Results

COPD patient characteristics

In this study, a total of 69 individuals including 36 COPD patients as
well as 33 healthy volunteers were enrolled. No significant difference
shows in sex, age, Body Mass Index (BMI), family history of COPD as
well as a history of smoking between the two groups (Table 2).

mRNA expression profile in COPD patients

A total of 55 miRNAs in the plasma of COPD patients were assessed,
6 miRNAs levels were notably increased while 3 miRNAs levels were
decreased markedly (Fig. 1). These miRNAs were selected for further
analysis.

Validation of dysregulated miRNAs in COPD patients

The 9 miRNAs with notably differential expression in COPD patients
were verified via RT-qPCR. Compared to the healthy individuals, 6 miR-
NAs (has-miR-22-3p, has-miR-24-3p, has-miR-203a-3p, has-miR-320a-
3p, has-miR-320b, has-miR-126-3p) expression were significant up-reg-
ulated (Fig. 2A‒F), nevertheless, 3 miRNAs (has-miR-100-5p, has-miR-
423-5p, has-miR-200b-3p) were down-regulated observably (Fig. 2G‒I).
Considering that miR-423-5p was notably dysregulated in COPD
patients and had not been reported at present, further analysis will focus
on miR-423-5p.

Receiver operating characteristic curves for miR-423-5p

Compared with the healthy individuals, the receiver operating char-
acteristic curve showed that the AUC of miR-423-5p for the diagnosis of
COPD was 0.9651 (95% CI: 0.9269−1) (Fig. 3). Besides, there was no
significant difference in sex, age, BMI between miR-423-5p low expres-
sion group and high expression group. Besides, more patients with a
family history of COPD and smoking longer expressed a low level of
miR-423-5p (Table 3).



Fig. 1. mRNA expression profile in COPD patients. Volcano plots indi-
cated the differentially expressed miRNAs between COPD patients and
normal samples.

Fig. 2. Validation of dysregulated miRNAs in COPD patients. (A‒I) Expression of different miRNAs. ** p < 0.01, *** p < 0.001 versus normal.
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Fig. 3. Receiver operating characteristic curves for miR-423-5p. ROC curve
analysis of diagnostic efficacy of miR-423-5p.

Table 3
Demographic, clinical and biological data of the COPD patients and healthy
controls in the miRNA screen study.

Clinicopathologic characteristics Low (n= 25) High (n= 11) p-value

Male/Female 13/12 6/5 0.8879
Age (years), mean ± SD 57.64 ± 11.25 60.64 ± 15.08 0.5121
BMI (kg/m2), mean ± SD 24.45 ± 3.30 24.45 ± 4.03 0.3425
Family history of COPD 0.0433*
No 7 7
Yes 18 4
History of smoke 0.7598
No 10 5
Yes 15 6
Duration of smoking (years) 37.56 ± 4.76 33.00 ± 7.20 0.0346*
FEV1 (%predicted), mean ± SD 51.26 ± 11.48 56.35 ± 9.92 0.2115
FEV1/FVC (%), mean ± SD 58.08 ± 10.78 63.15 ± 8.63 0.1779
FVC (L), mean ± SD 3.57 ± 0.33 3.62 ± 0.22 0.6991

Fig. 4. Relationship of plasma miR-423-5p expression in COPD patients as well
as smoking history. Correlation between the levels of plasma miR-423-5p as
well as the duration of smoking.
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Relationship between plasma miR-423-5p expression in COPD patients as
well as smoking history

The plasma miR-423-5p level in COPD patients was inversely corre-
lated with the duration of smoking (r= -0.5251, p < 0.0001; Fig. 4).

Relationship between plasma miR-423-5p expression in the chest tomography
results of COPD patients

As shown in Fig. 5, the authors found that COPD patients with low
levels of miR-423-5p exhibited an obvious disease characteristic com-
pared with COPD patients with high levels of miR-423-5p.

Discussion

COPD is the third leading cause of death worldwide.26 China is a
high incidence area of COPD. According to statistics, nearly one-third of
4

the 2.99 billion COPD patients worldwide in 2017 were in China.27,28 In
this study, plasma levels of 55 miRNAs were measured from 36 COPD
patients as well as 33 healthy individuals, and 9 miRNAs were found to
be significantly dysregulated. Among them, 6 miRNAs expression signif-
icantly increased while 3 miRNAs were decreased observably. Further
analysis of miR-423-5p revealed that the AUC of miR-423-5p for the
diagnosis of COPD was 0.9169 (95% CI: 0.8415−0.9923), and its expres-
sion level was inversely correlated with the duration of smoking in
patients, suggesting that miR-423-5p has potential value as a clinical
diagnosis of COPD.

MiRNAs play a vital role in the physiological as well as pathological
mechanisms of various respiratory diseases, containing asthma, idio-
pathic pulmonary fibrosis, bronchiectasis, and COPD.29 Lung tissues
have been dependent on miRNAs since early embryonic development.
The expression of mir-29b in the epithelial cells of COPD patients is sig-
nificantly decreased.30 In addition, miR-335-5p expression was notably
decreased in lung fibroblasts of COPD patients.31 In this study, 9 miRNAs
were significantly dysregulated and RT-qPCR further confirmed
that 6 miRNAs (has-miR-22-3p, has-miR-24-3p, has-miR-203a-3p, has-
miR-320a-3p, has-miR-320b, has-miR-126-3p) expression were signifi-
cant up-regulated while 3 miRNAs (has-miR-100-5p, has-miR-423-5p,
has-miR-200b-3p) were down-regulated observably.

Reports showed that miR-423-5p takes part in the regulation of the
development of various tumors, such as aggravating the development of
lung adenocarcinoma by targeting CADM1,32 targeting GRIM-19 to pro-
mote the progression of prostate cancer,33 and targeting STMN1 to
inhibit the proliferation and invasion of osteosarcoma.34 There is no
report of mir-423-5p in COPD. In this study, compared with healthy
individuals, the miR-423-5p level in COPD patients was markedly
down-regulated, and the AUC for the diagnosis of COPD was 0.9651,
indicating that miR-423-5p can be used as a potential diagnostic indica-
tor for COPD. In addition, the miR-423-5p level in patients with COPD
Fig. 5. Relationship between plasma miR-423-5p expression and
the chest tomography results in COPD patients. The chest tomogra-
phy results of the COPD patients with the high levels of miR-423-
5p (A) and low levels of miR-423-5p (B).
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was inversely correlated with the duration of smoking (r = -0.5251,
p < 0.0001), and family history also had a notable effect on the decrease
of the miR-423-5p level.

In conclusion, the present study’s results suggest that 9 miRNAs were
dysregulated in COPD patients and miR-423-5p may be a target for
COPD diagnosis.
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