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OBJECTIVES: Oxidative stress results from an imbalance between the generation and elimination of oxidant
species. This condition may result in DNA, RNA and protein damage, leading to the accumulation of genetic
alterations that can favor malignant transformation. Persistent infection with high-risk human papillomavirus
types is associated with inflammatory responses and reactive oxygen species production. In this context,
oxidative stress, chronic inflammation and high-risk human papillomavirus can act in a synergistic manner. To
counteract the harmful effects of oxidant species, protective molecules, known as antioxidant defenses, are
produced by cells to maintain redox homeostasis. In recent years, the use of natural antioxidants as therapeutic
strategies for cancer treatment has attracted the attention of the scientific community. This review discusses
specific molecules and mechanisms that can act against or together with oxidative stress, presenting alternatives
for cervical cancer prevention and treatment.
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’ INTRODUCTION

Oxidative stress: general aspects
Oxidative stress (OS) results from an imbalance in the

formation and elimination of oxidant species. Accumulation
of these molecules may lead to cell dysfunction as a
consequence of accumulated oxidative modifications in
several biomolecules (1). Free radical generation represents
a continuous physiological process that results from biolo-
gical functions, including metabolism and inflammation.
In the mitochondria, cytochrome P450 and peroxisomes are
the major endogenous factors leading to reactive oxygen
species (ROS) and reactive nitrogen species (RNS) formation.
Other exogenous factors, such as radiation, tobacco smoking,
chemotherapy and diet, are also important inductors of free
radical production (2). Intermediate reactive species that
are naturally produced under physiological conditions have
a crucial role in metabolic regulation, the cell cycle and
intracellular signaling pathways (3).

To maintain redox homeostasis, protective molecules
called ‘‘antioxidant defenses’’ act to preserve the balance
between formation and removal of ROS and RNS. Cellular
antioxidant systems are currently divided into enzymatic
and non-enzymatic groups. The enzymatic group comprises
catalase, superoxide dismutase (SOD), glutathione peroxi-
dase (Gpx) and glutathione-S-transferase (GST). The non-
enzymatic group is composed of molecules such as vitamins
C and E, lipoic acid, carotenoids, flavonoids and others (4).
Excess levels of unneutralized free radicals and cellular

active intermediates are the major cause of OS (5-7). The
presence of high concentrations of oxidized biomolecules is
associated with alterations in aerobic metabolism, inflam-
matory response, exposure to UV radiation, hypoxia, anom-
alous cell proliferation and viral infections, among others.
Therefore, OS is directly associated with several pathological
conditions including tumors associated with human papillo-
mavirus (HPV) infection (Figure 1) (8-10).

Human papillomavirus infection and cancer
Persistent infection with high-risk HPV types (HR-HPV) is

the main etiological cause for the development of several
epithelial tumors at different anatomic locations. The most
strongly HPV-associated malignancy is cervical carcinoma,
where almost all tumors are positive for HR-HPV DNA (11).
Cervical carcinoma is the second most common type of
cancer in women worldwide, with approximately 530,000
new cases and 270,000 deaths per year, of which more
than 85% occur in developing countries. HPV infection isDOI: 10.6061/clinics/2018/e548s
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implicated in a variable, although consistently high, pro-
portion of vaginal, vulvar, anal, penile and head and neck
carcinomas (12,13).
In addition to HPV infection, several cofactors contribute

to cervical cancer development. These include low socio-
economic status, early sexual initiation, multiple sexual
partners, smoking, multiparity, immunosuppression and
use of oral contraceptives (14,15). Cervical cancer is mostly
a consequence of the continuous evolution of non-invasive
precursor lesions called cervical intraepithelial neoplasia
(CIN) that are characterized by different degrees of cellular
atypia (dysplasia) (16). CIN is divided into the following
groups: CIN 1, characterized by mild dysplasia; CIN 2,
which represents moderate dysplasia; and CIN 3 or carci-
noma in situ, characterized by a severe dysplasia that may
progress to an invasive squamous cell carcinoma (SCC).
Moreover, changes in the glandular epithelium of the cervix,
caused by HPV and other cofactors, are associated with the
development of cervical adenocarcinoma (16,17). Further-
more, in persistent viral infection, HPV-induced carcinogen-
esis involves genetic and epigenetic changes that affect the
expression of different cellular proto-oncogenes and tumor
suppressor genes. Usually, this process requires an extensive
period to accumulate sufficient alterations to trigger and
sustain tumor development (18,19). Therefore, immune
system evasion and HPV persistence are crucial factors
for tumorigenesis (20). This is highlighted by the fact that
the great majority of HPV infections are self-limited and
spontaneously resolved in few months, and cancer develop-
ment affects only a small proportion of infected individuals.
E6 and E7 viral oncoproteins have a central role in tumor

development. In high-grade lesions and tumors, these pro-
teins are upregulated mainly due to the loss or disruption

of the viral E2 gene (see below), which normally restricts the
expression of viral oncogenes (21). The HPV oncoproteins
E6 and E7 interact with several tumor suppressor factors
and cell cycle regulators, such as p53 and pRB, respectively.
These interactions lead to their deregulation and cell immor-
talization. In addition, E6 and E7 affect many other cellular
proteins with several regulatory activities, promoting immune
evasion, resistance to apoptosis and epithelial cell prolifera-
tion (22). The pleiotropic functions of these oncoproteins
deserve to be noted, since they result from a well-adapted
evolutionary relationship between virus and host that is
essential for HPV tumorigenesis (23). Persistent viral infec-
tion, abnormal metabolism of keratinocytes expressing HPV
oncogenes and non-effective chronic inflammatory responses
lead to ROS production (24) and cause OS, contributing to
the cell transformation process (25).

Alterations in expression and activity of some antioxidant
proteins, including peroxiredoxins, catalase, quinone oxidor-
eductase-1 and superoxide dismutase (SOD) family proteins,
can be detected in pre-neoplastic and neoplastic tissues
associated with HPV infections. For example, expression
of SOD2, a crucial antioxidant enzyme responsible for con-
trolling the redox status of normal and tumor cells, is
upregulated in several HPV-associated tumors, including
penile and cervical carcinomas (26-29). Furthermore, results
from different studies have established that the HR-HPV
E6 and E7 oncoproteins can modulate OS to favor the
accumulation of mutations, a fact that is directly related to
cell transformation (23,30,31).

Oxidative Stress and inflammasomes
Inflammasomes are cytosolic multiprotein complexes that

assemble after exposure to pathogens or danger-associated
molecular patterns, leading to caspase activation and, con-
sequently, secretion of inflammatory cytokines and cell
death. Although different inflammasome complexes have
been described, with unique activation triggers, they typi-
cally consist of a cytosolic pattern recognition receptor
(PRR) such as RIG-I-like receptor (RLR), AIM2-like receptor
(ALR) or nucleotide-binding domain and leucine-rich repeat-
containing (NLR) protein, an adaptor protein (ASC) and pro-
caspase-1. The OS generated during HPV infections can
be modulated by the infected keratinocytes as well as by
activated neutrophils and macrophages (32-34). Moreover,
ROS regulate inflammasomes in response to oncogenic
viral infections, such as HR-HPV (35-37). Inflammasomes
are important because they activate caspase-1 in response
to invading pathogens. Therefore, caspase-1 cooperates with
apoptosis-associated speck-like protein containing a C-terminal
caspase-recruitment domain (ACS), processing the proin-
flammatory cytokines interleukin 1 beta (IL-1b) and inter-
leukin 18 (IL-18) into their mature forms (38).

Furthermore, protein absent in melanoma-2 (AIM2) acti-
vates caspase-1 and inflammasomes by binding to foreign
cytoplasmic double stranded DNA (dsDNA) and its adaptor
ACS (39-41). Interestingly, HPV16 activates AIM2 inflamma-
somes and promotes upregulation of proinflammatory
cytokines such as IL-1b, IL-1a, and IL-18, which are increased
in lesions that evolve to cervical cancer (36).

Oxidative Stress and Nuclear Factor-kappa B
Nuclear factor-kappa B (NF-kB) is a pleiotropic transcrip-

tion factor composed of dimers of five different members of

Figure 1 - Several factors, such as environmental pollutants,
chemicals, tobacco smoking, chronic inflammation, among others,
generate reactive oxygen and nitrogen species (ROS/RNS). An
imbalance between oxidant species and the antioxidant system
results in DNA, RNA and protein damage, which may lead to the
accumulation of genetic alterations and promote malignant trans-
formation. Sources of ROS/RNS.
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the Rel transcription factor family that include p105/p50,
p100/p52, RelA, RelB and cRel (42). This factor is found in
the cytoplasm from the majority of resting cells, and after
activation by a wide range of signals, such as viral infections,
bacterial lipopolysaccharides (LPS), DNA damage, OS and
proinflammatory cytokines, this protein translocates to the
nucleus and regulates the expression of hundreds of genes
(42-44). Genes encoding cytokines and chemokines, growth
factors, cell adhesion molecules, anti-apoptotic proteins and
antioxidant enzymes are regulated by NF-kB (45,46).
NF-kB plays a central role in inflammation and immune

responses but also acts in different cellular processes,
including development, cell growth, survival and prolifera-
tion. Furthermore, this transcription factor has a role in many
pathological conditions, including cancer, where it may be
involved in tumor growth and metastasis (42,44).
ROS levels can be affected by NF-kB activity through its

influence on the expression of antioxidant proteins, including
SOD1, SOD2, Ferritin Heavy Chain (FHC), Glutathione
S-transferase pi (GST-pi), Glutathione peroxidase-1 (Gpx1)
and Dihydrodiol dehydrogenase (DDH1). However, ROS
may activate or inhibit NF-kB signaling depending on
the signaling pathway step (upstream or downstream) and
cell type analyzed (44,47-49). A recent study showed that
Pirin, another NF-kB regulator and OS sensor, is over-
expressed in cervical cancer-derived cell lines and in oral
mucosal keratinocytes expressing HPV16 oncogenes (50).
This observation shows another mechanism for HR-HPV-
dependent NF-kB activation in cervical cancer cells and
further supports the potential use of this factor as a thera-
peutic target.
NF-kB activation by free radicals or enzymes is a complex

event and can cause various biological effects. For example,
its activation by SOD2 has been associated with lung adeno-
carcinoma progression and poor prognosis (51). Addition-
ally, OS generated in tumors can impair NF-kB translocation
in thymic T cells, which become vulnerable to tumor necrosis
factor alpha (TNFa)-mediated apoptosis.
Interestingly, curcumin, a natural antioxidant that is dis-

cussed below, could prevent tumor-induced thymic atrophy,
restoring NF-kB activity, and thus acted as an immunor-
estorative compound (43).

Oxidative Stress and DNA damage
A crucial event in HPV-mediated malignant transforma-

tion is the integration of HR-HPV DNA into the cell genome.
This event results in E6 and E7 oncogene overexpression,
which leads to the destabilization of p53 and pRb tumor
suppressor proteins, respectively (52). HR-HPV integration is
facilitated by generation of DNA damage/double strand
breaks (DSBs) (53). Notably, DNA damage causes DNA oxi-
dation, leading to a plethora of genome alterations, including
deletions, insertions, point mutations, DSBs and transloca-
tions (54,55).
Genome oxidative damage was previously shown to

be strongly involved in epigenetic alterations (56). In an
elevated oxidative DNA damage environment, the produc-
tion of 8-oxo-20-deoxyguanosine (major product of DNA
oxidation) coincides with increased HPV infection, viral-
host integration and cervical dysplasia (57). Furthermore,
HR-HPV integration into the cell genome generally causes
the disruption of the HPV E2 ORF, resulting in E2 gene
inactivation and upregulation of E6 and E7 transcription (53).

DNA repair pathways can be affected by HPV oncopro-
teins, resulting in the inactivation of important groups of
genes, such as base excision repair (BER), nucleotide excision
repair (NER), DNA mismatch repair (MMR), microhomol-
ogy-mediated end joining (MMEJ), Fanconi anemia (FA),
ataxia-telangiectasia mutated (ATM), and the ATM and
Rad3-related (ATR) genes (58). These pathways are impli-
cated in HR-HPV-mediated cervical cancer (59,60).
During HR-HPV infection, apoptosis is hindered by

disruption of many regulatory pathways, which results in
altered cell proliferation associated with accumulation of
mutations and alterations in gene expression (24). In HPV16-
related invasive cervical cancer, E2 binding sites (E2BSs)
at the viral long control region (LCR) are epigenetically
regulated by hypermethylation, dampening E2 protein bind-
ing and resulting in the upregulation of E6 and E7 expression
(61-63). Moreover, DNA methylation functions as a barrier
protecting the virus from immune surveillance (64,65). In
summary, theoretical considerations suggest that OS, chronic
inflammation, epigenetic alterations and HR-HPV can act in
a synergistic manner during oncogenesis.

’ THERAPEUTIC APPROACHES

Oxidative stress control: natural antioxidants
Recently, natural compounds with chemopreventive and

chemotherapeutic properties, which have antioxidant fea-
tures, have received increased attention (66). An inverse
association was observed between antioxidant factors pre-
sent in the diet and HPV tumorigenesis, suggesting that
natural antioxidants may protect against HPV persistence
and tumor development (67,68). Furthermore, studies using
natural compounds present in plant extracts, such as cur-
cumin and resveratrol, have been shown to sensitize tumor
cells to radio- and chemotherapy. These observations indi-
cate that natural antioxidants have the potential to reduce the
establishment and progression of precursor lesions. Mole-
cules with these properties may be used as a complementary
approach for cancer treatment (69,70).

Curcumin
Curcumin, also known as diferuloylmethane (Figure 2A),

is one of the main compounds present in turmeric (Curcuma
longa - Zingiberaceae family) rhizome (71). Moreover, cur-
cumin scavenges ROS and RNS due the activity of the OH
or CH2 group of the b-diketone moiety. In other words,
curcumin reacts with free radicals by electron transference
followed by proton loss or direct H-atom abstraction, mainly
due to the phenolic OH group (72-74). The value of curcumin
has been widely addressed and discussed in scientific litera-
ture. This compound has anti-inflammatory, antitumoral,
antioxidant, and cardioprotective activities and several other
properties (75-82). Curcumin can inhibit NF-kB activation
through restriction of IkBa kinase and Akt activation (83-89).
This change results in the inhibition of NF-kB-regulated gene
products that control apoptosis, proliferation, invasion and
angiogenesis (90,91).
Moreover, curcumin downregulates other crucial tran-

scription factors responsible for controlling cell growth and
survival pathways, including signal transducer and acti-
vator of transcription 3 (STAT3), cyclooxygenase 2 (COX2),
Akt, antiapoptotic proteins and activator protein 1 (AP1)
(69,92,93). In addition, this compound can downregulate
angiogenesis in vivo, inhibiting the activity of proangiogenic
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molecules, such as fibroblast growth factor 2 (FGF-2), matrix
metalloproteases and COX2, as noted previously (94,95).
Finally, curcumin can induce the expression of antioxidant
enzymes through nuclear factor erythroid 2–related factor 2
(NRF2) activation (57).
Due to its biological properties and low toxicity, curcumin

is an interesting alternative to therapeutic agents used for the
treatment of several types of cancer (96-98). Various studies
have addressed the antitumor effects of curcumin in experi-
mental models of cervical cancer. For instance, the HPV16-
positive cervical cancer-derived cell line SiHa could be
sensitized to cisplatin treatment by curcumin co-administra-
tion. This treatment inhibited NF-kB activity and increased
cell death (99). Treatment with curcumin also sensitized
cervical cancer-derived cells and HPV-positive tumors to
taxol and paclitaxel, respectively. Again, these effects involve
the downregulation of survival signals regulated by NF-kB
and Akt, such as phosphorylation of MAPKs and induction
of Cyclin-D1, COX2, X-linked inhibitor of apoptosis protein
(XIAP) and cellular inhibitor of apoptosis protein-1 (cIAP1)
(100-102).
In addition, curcumin was shown to downregulate HPV18

transcription in HeLa cells, inhibiting the AP1 pathway and
reversing the expression patterns of the c-fos and fra-1
transcription factors (103). Furthermore, depending on the
concentration and duration of treatment with curcumin,
a cytotoxic effect could be observed in cervical cancer cells
(104). Interestingly, another study showed that thioredoxin
reductase plays a role in the radiosensitizing effect of
curcumin on cervical cancer cells (105). Due to its chemo-
preventive activity in several types of cancer, curcumin
has been evaluated in preclinical studies and clinical trials
(106). A study was developed using curcumin in a specific
formulation (Meriva) to investigate its impact on the quality
of life of 160 cancer patients. Study participants presented
solid or hematological malignancies and were undergoing

radio- or chemotherapy following surgical treatment, with
significant side effects and increased oxidative stress. Despite
the study limitations, which were recognized by the authors,
the results provided the first clinical evidence that curcumin
may reduce the side effects of cancer treatment and improve
patient quality of life. Notably, curcumin has extremely low
oral bioavailability, and that it is necessary to develop
formulations that allow its clinical use (107).

Epigallocatechin-3-gallate (ECGC)
Another important polyphenol with anticancer properties

is epigallocatechin-3-gallate (ECGC). This compound (Figure
2B) it is the major catechin from Camellia sinensis, found
in green tea (108). This potent antioxidant scavenges ROS
and has antiproliferative, antiangiogenic, antimetastatic and
proapoptotic effects in several tumor models (109-119).

EGCG is a potent inhibitor of the Akt/NF-kB and mam-
malian target of rapamycin (mTOR) signaling pathways
inducing apoptosis and cell survival mechanisms. Moreover,
EGCG can cause NRF2-mediated antioxidant induction and
reduce inflammation (120). Notably, the activation of NRF2 is
a key target of cytoprotective agents, and its upregulation
results in increased expression of Heme oxygenase-1 (HO-1
antioxidant enzyme) (121). Furthermore, NRF2 prevention
of inflammation by ROS occurs though the inactivation of
NF-kB (122). The ECGC antiproliferative effect is related to
the accumulation of cells in the G1 phase of the cell cycle,
followed by apoptosis (123). Interestingly, this compound
can also induce apoptosis in cervical cells extracted from
fresh tissues (124).

A recent study showed that EGCG exhibits free radical
scavenging properties in cells isolated from cervical cancer
biopsies, decreasing cell proliferation and increasing the
activity of antioxidant enzymes, such as SOD and Gpx (125).
In addition to targeting cell growth and apoptosis, this
compound can further inhibit telomerase action, impairing

Figure 2 - (A) Chemical structure of curcumin. PubChem CID 969516; (B) Chemical structure of epigallocatechin-3-gallate. PubChem CID
65064; (C) Chemical structure of resveratrol. PubChem CID 445154; (D) Chemical structure of pyridoxal-50-phosphate. PubChem CID
1051; (E) Chemical structure of ascorbic acid. PubChem CID 54670067; (F) Chemical structure of a-tocopherol. PubChem CID 14985.
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initiation and development of cervical lesions (126,127).
As mentioned before, ECGC also displays antiangiogenic
features through inhibition of hypoxia-inducible factor 1
alpha (HIF-1a) and of vascular endothelial growth factor
(VEGF), as a result of proteasome activity and blockage of
PI3K/Akt and ERK1/2-regulated pathways (128).
Interestingly, EGCG can act synergistically with cisplatin,

inhibiting the growth of cervical cancer-derived cell lines.
This finding suggests that cisplatin treatment is potentiated
with EGCG in HeLa cells, regulating pathways involved in
cell survival and apoptosis. This combination may improve
cervical cancer treatment, especially in the context of chemo-
resistance to cisplatin (129).
A clinical trial was carried out to verify the efficacy of two

green tea extract-derived compounds, EGCG and polyphe-
non E, in a study involving ninety women with HPV-related
cervical lesions. These patients were divided in four different
groups, according to the following regimens: local applica-
tion of a polyphenon E ointment, daily oral dose (200 mg) of
polyphenon E, both local and oral polyphenon E and 200 mg
daily oral dose of EGCG. Patients treated with EGCG or
polyphenon E responded positively to the treatment, with a
reduction in HPV DNA copies and regression of virus-
associated lesions, while the majority of the untreated group
showed no improvement (130).

Resveratrol
Resveratrol or 3,5,4-trihydroxystilbene (Figure 2C), a

phytoalexin found in grapes, peanuts, blueberries and other
food products, shows antitumor effects by interacting with
several molecules involved in tumor development, such as
first apoptosis signal receptor (Fas), MAPK, NF-kB and AP1
(131,132).
Resveratrol exhibits antiproliferative effects on cervical

cancer-derived cell lines. This effect was characterized by
accumulation of cells in the S-phase of the cell cycle (70).
The result was further confirmed by another study, using
a double dosage of resveratrol, which induced a transient
and reversible accumulation of HeLa cells in the S-phase
(133). Recently, the glycoprotein cyclooxygenase pathway
was shown to be a crucial target of resveratrol. However,
it apparently does not directly regulate COX expression.
Instead, it may regulate other enzymes related to prostaglan-
din synthesis acting downstream of the COX pathway (134).
The chemopreventive efficacy of resveratrol has already

been demonstrated in hepatocellular, skin, prostate and lung
cancers, through several regulatory pathways (135,136).
Nevertheless, its exact mechanism in cervical cancer remains
to be investigated, which limits its therapeutic applications.
Recent data demonstrated that resveratrol inhibits HeLa cell
growth and induces apoptosis in a dose- and time-dependent
manner. In addition, these cells presented apoptotic char-
acteristics, such as cell shrinkage, formation of apoptotic
bodies and DNA fragmentation (137). Interestingly, resver-
atrol can reduce the active form of Akt, leading to autophagy,
cell cycle arrest and apoptosis of SiHa and HeLa cells.
Moreover, it can destabilize lysosomes, resulting in cathepsin
L (cat L) translocation to the cytosol (131,134,138,139). When
the cat L enzymatic activity increases in the cytosol,
cytochrome c is released from the mitochondria, leading to
cell death by apoptosis. Triggering apoptosis through cat L
causes lysosome membrane permeabilization and release of
its proteases to the cytosol. (138). Studies conducted by Rezk

et al. (140) showed that resveratrol improves the effective-
ness of cisplatin and doxorubicin chemotherapy, suggesting
it can be used in cervical cancer treatment.

Pyridoxal-50-phosphate (Vitamin B6)
Pyridoxal-50-phosphate (PLP) is the bioactive form of

vitamin B6 (Figure 2D). There are three non-phosphorylated
vitamin B6 precursors, catalyzed by pyridoxal-kinase (PDXK)
into their phosphorylated forms, including PLP (141).
Vitamin B6 is required as a co-enzyme for many bio-

chemical reactions, including amino acid synthesis and
catabolism, bioactive amine synthesis (histamine, serotonin,
dopamine), hemoglobin synthesis, and glycogenolysis (142-
144). Its antioxidant properties include direct effects, due to
reaction of its hydroxyl and amine groups with peroxy
radicals, or indirect effects, due to its role in homocysteine to
cysteine conversion. Cysteine is a necessary substrate for
glutathione synthesis and is essential for an ideal redox
balance (145).
Vitamin B6 could sensitize several cancer cell lines to

apoptosis after cisplatin-mediated DNA damage by depleting
intracellular glutathione. Furthermore, low PDXK expression
was associated with poor prognosis in two independent
cohorts of non-small cell lung cancer patients (146).
In a cohort of thirty-three hepatocellular carcinoma patients

that randomly received placebo or vitamin B6 (50 mg/d),
the results indicated that vitamin B6 improved the anti-
oxidant capacity by reducing homocysteine levels in patient
plasma (145).

Ascorbic acid (vitamin C)
Recent data have shown that vitamin C, also known as

ascorbic acid (Figure 2E), is another antioxidant molecule
and can increase the effect of chemotherapeutic agents with-
out augmenting their toxicity in normal cells.
In SiHa cells, the association of vitamin C and cisplatin

enhanced cisplatin-mediated apoptosis induction through
a p53-mediated pathway. Therefore, low concentrations of
cisplatin were required to induce cancer cell death. Hence,
it is tempting to speculate that, in combination with vitamin C,
low amounts of cisplatin could be used in cancer patients,
reducing its side effects (147).
Interestingly, ascorbyl stearate (ASC-S), a fatty acid ester

derivative from ascorbic acid, exhibits a potent proapoptotic
activity. Recently, Mane et al. (148) described the proapopto-
tic effect of this molecule on HeLa cells due to the induction
of changes in the mitochondrial membrane permeability,
cytochrome c release and caspase-3 and NF-kB activation.
Finally, the direct impact of ascorbic acid on cervical

carcinogenesis has been suggested. A cross-sectional study
published by Hwang et al. (149) showed that a dietary
supplementation including vitamin C might reduce the risk
of CIN in women with HR-HPV infection.

a-Tocopherol (vitamin E)
Results from previous studies suggest the existence of an

association between plasma levels of vitamin E, also known
as a-tocopherol or 5,7,8-trimethyltocol (Figure 2F), and HPV
infection status. For example, women with CIN were shown
to exhibit decreased plasma levels of this antioxidant com-
pound, which may reflect the existence of elevated OS
(150,151). Similar results showed that patients with cervical
cancer had low levels of vitamin E (152). Additionally,
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Hu and co-workers (153) suggested that vitamin E intake or
high circulating levels may reduce the risk of CIN and cervical
cancer. Furthermore, a study published by Palan et al. (154)
supports previous data suggesting that a-tocopherol and
other antioxidants have an important protective role in vivo.
In addition, the maintenance and regeneration of a-tocopheryl
quinone (a non-oxidized form of a-tocopherol) may also
have an important role in CIN and in cervical cancer. How-
ever, further investigations of a-tocopheryl quinone as a
potential marker of OS in precancerous lesions and cervical
cancer are strongly needed (154).

Oxidative stress induction: traditional
chemotherapy
Despite the positive results with the use of the antioxidant

compounds described above, traditional cancer chemother-
apy still relies on the induction of OS triggered by ROS levels
higher the than tumor elimination capacity, which contri-
butes to tumor cell death (155). Nevertheless, evidence has
shown that upregulation of antioxidant enzymes by cancer
cells has a relevant role in OS control and possibly in drug
resistance (156).
One of the most important systems involved in cell

protection against elevated levels of free radicals, includ-
ing those induced by chemotherapy and radiotherapy, is
composed of glutathione (GSH) and GSH-related enzymes
(157). Regarding this issue, a study analyzed the role of the
GSH redox system in drug-resistant glioblastoma multiforme
cells. Temozolomide (TMZ)-resistant glioma cells showed
low levels of ROS and high GSH and glutathione reductase
levels, exhibiting greater antioxidant capacity than sensitive
cells, suggesting that this redox system may be an important
therapeutic target (158). Interestingly, HPV proteins can also
modulate ROS by regulating GSH and SOD levels (159). In
fact, a relationship between GSH levels in cervical cancer
cells and resistance to doxorubicin treatment, an anticancer
drug that induces DNA damage and ROS production, was
observed (160).
An alternative treatment for cervical cancer involves

molecules capable of inhibiting antioxidant pathways. For
example, exposure of HeLa cells to pinostrobin, a dietary
bioflavonoid, was associated to reduced cell viability and
downregulated GSH and NO2- levels. Pinostrobin-associated
cell death involves upregulation of apoptotic extrinsic and
intrinsic pathways components, as well as DNA and mito-
chondrial damage, probably as a consequence of ROS
accumulation (161).
Another compound, auranofin, an inhibitor of thioredoxin

reductase, can also trigger apoptosis while depleting GSH
and increasing ROS intracellular levels. In addition, its effect
on cervical cancer cell lines can be intensified in combination
with a GSH synthesis inhibitor, L-buthionine sulfoximine
(162). By inhibiting antioxidant effects, these treatments
overcome HPV resistance to ROS induction, leading to cell
death. Finally, therapeutic approaches using ROS inductors
or antioxidant molecules such as SOD and SOD-mimetics
combined with radiotherapy or chemotherapy have been
investigated and may constitute viable alternatives for cancer
treatment in the future (163).

Enzyme inhibitors
The use of enzyme inhibitors such as tyrosine kinase

inhibitors (TKIs) to modulate ROS effects constitutes an

important alternative to cancer therapies currently under
investigation. Sunitinib, for instance, is the most common
TKI administered in clinical medicine, and it effectively
blocks VEGF receptors (164-166), platelet-derived growth
factor receptor (PDGFR) alfa and beta, and c-Kit (167).

According to some published data, sunitinib could have
antioxidant activity due to the improved lipid peroxidation
and increased GSH levels observed after cisplatin treatment,
reducing OS-triggered side effects and improving che-
motherapeutic efficacy (168). When combined with chlor-
oquine, sunitinib augments NOS production, causing an
accumulation of RNS and triggering apoptosis; it also
increases the levels of GSH, which in turn can interrupt
apoptosis (169). In addition, a combination of chloroquine
and sunitinib induces increased toxicity in breast, cervical,
colorectal, hepatocellular, laryngeal and prostate cancer cell
lines as well as in mouse tumor models (169). However,
based on the current knowledge, the potential impact of
these effects on patients’ outcome are still unclear.

Another approach involving enzyme inhibitors was
applied in a study that developed a new radiosensitization
technique using a hydrogen peroxide solution (Oxydol)
named KORTUC (Kochi Oxydol-Radiation Therapy for
Unresectable Carcinomas). This approach aimed to treat
patients with local advanced unresectable neoplasms,
through tumor antioxidative enzyme blockage, leading to
tumor sensitization to radiotherapy (170). The same group
published further clinical studies showing that this method
may be a safe, well-tolerated, and efficient approach (170-
173). However, it is also a broad field of study.

Oxidative stress is a consequence of an imbalance between
pro- and antioxidant factors. The antioxidant system main-
tains the oxidative process within physiological limits,
preventing injuries that can culminate in irreparable systemic
damage and diseases.

Signaling pathways related to redox control in HPV-
mediated carcinogenesis represent promising targets for
cancer treatment. Some antioxidant molecules, including
natural compounds, may be useful preventive or therapeutic
alternatives. Despite the positive results of antioxidant
compounds, OS induction is still an effective therapeutic
approach used in traditional chemotherapy. This approach
aims to enhance reactive species production to levels that
overcome the tumor elimination capacity, leading to tumor
cell death. However, evidence has shown that an increase in
antioxidant enzymes by cancer cells has an important role in
OS control and possibly in drug resistance.

Current knowledge indicates that several molecules and
enzyme inhibitors act to modulate ROS and that they are
some of the most significant therapeutic targets for antic-
ancer compound development and should be extensively
studied. Despite several lines of evidence based on in vitro or
animal model studies, relatively few clinical trials have been
carried out. These trials are essential for the establishment of
new therapies targeting oxidative stress, including those
using natural compounds.
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