DETERMINAÇÃO POR CROMATOGRAFIA EM CAMADA DELGADA DOS HORMÔNIOS TIREÓIDEOS — 125 I NA TIREÓIDE DO RATO E SUA APLICAÇÃO A UM TUNICADO UROCORDADO — CIONA

INTESTINALIS L.

ARY DOMINGOS DO AMARAL.*

Livre Docente do Departamento de Fisiologia Geral do Instituto de Biociências da Universidade de São Paulo

RESUMO

Descrevemos um método para a separação e determinação dos hormônios tireóideos- 125 I nos homogeneizados de tireóide de ratos após a administração de Iodeto- 125 I usando a Cromatografia em Camada Delgada.

Após a padronização o mesmo método foi aplicado ao homogeneizado de um Tunicado: Ciona intestinalis L.

DETERMINATION OF 125 I – THYROID HORMONES IN THE RAT THYROID BY THIN LAYER CHROMATOGRAPHY AND ITS APPLICATION TO A TUNICATE, CIONA INTESTINALIS L.

SUMMARY

A method for the separation and determination of thyroidal hormones- $^{125}\mathrm{I}$ with Thin-Layer Chromatography in thyroid homogenate of rats after the administration of Iodide- $^{125}\mathrm{I}$ is described.

After the standartization the same procedure was applied to the homogenate of the Tunicate Ciona intestinalis L.

INTRODUÇÃO

O interesse nos efeitos biológicos da tiroxina e seus análogos cresceu enormemente após Gross e Pitt-Rivers (1951)⁽¹⁾ terem demons-

^{*} Este trabalho foi realizado no Departamento de Zoologia da Universidade de Nottingham (serviço do Prof. E. J. W. Barrington) com o auxílio da C.N.E.N. (Comissão Nacional de Energia Nuclear do Brasil).

Número especial em homenagem ao Prof. Dr. Paulo Sawaya, no ano jubilar de seu magistério.

trado a presença de 3, 5, 3' triiodotironina na glândula tireóidea e no meio circulante humano.

Assim, vários métodos foram descritos para a separação por cromatografia em papel dos iodoaminoácidos e compostos relacionados⁽²⁾.

Entretanto, a separação por cromatografia em papel requer de 18 a 72 horas para o desenvolvimento do cromatograma no tanque o que acarreta consequentemente um aumento da desiodação dos hormônios (3).

A cromatografia em camada delgada é um método simples e rápido de separação e passou a ser usada com muito sucesso na análise de vários tipos de compostos (4).

Este trabalho teve particularmente a finalidade de investigar a aplicação da cromatografia em camada delgada na análise de cada hormônio tireóideo $**(T_3, T_4)$ e seus precursores **(MIT, DIT) nos fluidos biológicos.

Todo o método e os sistemas para cromatografia em camada delgada aqui descritos foram eficazes na separação de misturas contendo hormônios tireóideos e seus precursores. O trabalho foi realizado usando primeiramente tireóide de rato, marcada com ¹²⁵I, com o propósito de calibrar o sistema de varredura e seleção dos melhores solventes para cromatografia em camada delgada para, depois, ser aplicado aos homogeneizados de *Ciona intestinalis* L.

MATERIAL E MÉTODO

a. Tireóide de ratos: Injetou-se uma série de animais com 200 μCi de ^{125}I cada e decorridas 24 horas eles foram sacrificados, removendo-se a glândula tireóidea.

Cada glândula foi homogeneizada num homogeneizador tris-R, inicialmente com 0,2 M NaCl contendo anti-oxidante (metil-mercapto-imidazol) e depois com tris-salina pH 8,3 fria, usando o mínimo volume possível de tampão.

b. Ciona intestinalis L.: Incubou-se uma série de tunicados em água do mar contendo 200 μ Ci 125 l/litro, durante 5 a 10 dias, sendo a água trocada diariamente.

^{**} Abreviações usadas: T₄ = L-tiroxina, T₃ = L, 3,5, 3'triiodotironina, DIT = 3, 5, diiodotirosina, MIT = ? Monoiodotirosina, NHCl = ácido clorídrico normal, μCi = micro Curie, NaCl = cloreto de sódio, NH₄OH = — hidróxido de amônio, B.D.H. = British Drugs House, N NaOH = hidróxido de sódio normal, U.V = lâmpada ultra-violeta.

- c. $\it Hidrólise$: Todos os passos descritos a seguir foram os mesmos tanto para o material proveniente dos ratos como dos tunicados: hidrolizou-se os homogeneizados com Pronase tamponada (protease bacteriana adquirida do B.D.H.) na concentração de 0.5% durante 6 a 8 horas, a 37°C, em recipiente escuro e atmosfera de nitrogênio, com agitação constante $^{(3)}$.
- d. Extração dos compostos marcados (MIT, DIT, T_s e T_s): Após a hidrólise o homogeneizado foi acidificado (pH \leq 2) com gotas de N-H Cl e em seguida extraído três vezes com metade do seu volume com n-butanol $^{(5)}$.
- e. Remoção dos precursores (MIT, DIT) hormonais do extrato butanólico: A seguir o extrato butanólico foi alcalinizado (pH \geq 7,4) com N NaOH e lavado duas vezes com água, assim todo MIT e DIT passam para a fase aquosa deixando as iodotironinas (T_3 e T_4) na fase butanólica (5).
- f. Concentração dos extratos: Os extratos butanólicos (T_3 e T_4) e aquoso (MIT, DIT) foram reduzidos ao menor volume possível com pressão reduzida num evaporador rotativo a vácuo (Rotavapor R) $^{(6, 7)}$.
- g. Eluição: Após a concentração, as amostras foram dissolvidas em 0,2 ml de etanol (95%) e NH₄OH concentrado (1:1 v/v) estando assim prontas para a análise por cromatografia em camada delgada.
- h. Chomatografia em camada delgada (C C.D.): Todos os reagentes usados para C.C.D foram analíticos e os melhores resultados foram obtidos equilibrando, em temperatura ambiente, os solventes relacionados na Tabela 1.

As placas para C.C.D. foram preparadas usando-se dois adsorventes diferentes de acordo com vários autores: Silica gel G e celulose microcristalina, porém todas as placas tiveram a espessura de 0,25 mm de camada adsorvente.

Usaram-se sempre padrões não radioativos das substâncias (MIT, DIT, T_3 e T_4) juntos na mesma placa em concentrações usadas por outros autores (8) e seguindo o processo recomendado por eles (8, 9, 10).

- i. Identificação~por~U~V: Após o desenvolvimento do cromatograma as placas de cromatografia em camada delgada foram secas e examinadas com luz ultra-violeta (short wave (2537) radiation lamp), fornecida pelo aparelho: Chromatolite U V Hanovia equipment.
- j. Varredura das placas de C.C.D.: Seguindo-se a identificação pela lâmpada U V as placas foram varridas em um sistema semelhante ao descrito por Osborn e Simpson (12) e por Wayne e Chavre (13) usando um detetor de cintilação para 125I da Panax acoplado a um medidor de razão (ratemeter) e um registrador (flat-bed chart recorder SREC-2).
- k. Revelação das manchas: Após a varredura, as placas foram vaporizadas com as diferentes misturas: 0.2% ninhidrina para revelação de amino grupo; 0.1% Pd Cl₂ para revelação de iodo e a mistura sulfato cérico, arsenito de sódio e azul de metileno para revelação de iodoaminoácidos no geral $^{(14)}$.
- 1. Recuperação dos compostos marcados: Cada região da amostra correspondente ao padrão colocado ao lado no mesmo cromatograma foi raspada da placa, dissolvida em água e medida a radioatividade num detetor para radiação gama (autogamma analyser attached to a Packard n.º 3375 trichannel scintillation counter).

RESULTADOS

O resultado da determinação por C.C.D. dos iodoaminoácidos usando seis solventes diferentes, relacionados na Tabela I são apresentados nas Tabelas II e III, onde assinalamos também a percentagem de cada composto na análise total.

Com relação as Tabelas II e III, verificamos que os solventes ácidos (Tabela III) propiciaram melhor recuperação da tiroxina: 14,23%, 15,80% e 10,90% com os solventes número IV, V e VI respectivamente.

As Tabelas IV e V apresentam os resultados da varredura das placas de C.C.D. e a autorradiografia dessas placas onde temos uma ótima discriminação de cada composto pesquisado na varredura com o emprego do método ora descrito.

TABELA I

Solventes usados nas análises de hidrolisados de tireoide de ratos e de Dendrodoa grossularia (Van Beneden)

Solventes alcalinos tendo como absorventes:

Silica Gel G

- I. Álcool amílico terciário: acetona: 2N-NH₄OH (25:8:7)
- II. Acetato de etila: metanol: 2N-NH4OH (100:40:60) usar a fase superior
- III. n-Butanol saturado com 2N-NH4OH

Solventes ácidos tendo como absorventes:

Celulose em pó

- IV Ácido fórmico: água (1:5) com 0,3 g/l de tiosulfato de sódio
- V Acetona: 0.5 N ácido acético (2:8)
- VI. Butanol terciário: 2N-NH₄ OH: clorofórmio (376:70:60)

Assim, com o processo acima descrito selecionamos o solvente n.º IV, ácido fórmico e água para a análise do hidrolizado de *Ciona intestinalis* L. e a Tabela VI nos dá a radioatividade das manchas separadas por C.C.D. com especial referência à atividade da região correspondente à tiroxina encontrada nos cromatogramas de homogeneizado da túnica e do corpo dos animais.

Portanto, com o emprego da técnica descrita pudemos separar a tiroxina de seus precursores e identificar sua marcação contando com grande precisão a região do cromatograma correspondente a T_4 e usando somente $20~\mu l$ de amostra.

DISCUSSÃO E CONCLUSÃO

O problema da biossíntese tireóidea, nos vertebrados dito inferiores, principiou há muito tempo atrás. Cameron (15, 16) demonstrou por análise bioquímica, quantidades significantes de iodo nos tunicados.

Barrington e Franchi (17) e Barrington (18) demonstraram a fixação de radioiodo por *Ciona intestinalis* L. e Roche et al. (19) deram também em Ciona a distribuição dos compostos radioiodados no endóstilo e na camada externa da túnica.

Na mesma espécie animal, ainda Roche et al. (20, 21) demonstraram que a percentagem de tiroxina em animais sem túnica sofre uma

TABELA II

Hidrolisado de tireóide de rato $(20~\mu \mathrm{I})$

Medidas radioativas das placas de cromatografia em camada delgada em detetor de cintilação tipo poço das regiões correspondentes a cada composto

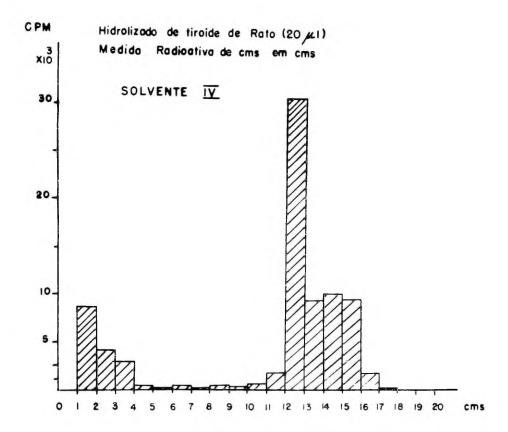
	Solvente I			Solve	Solvente II			Solvente III	
Compostos	C.P.M.	% desvio padrão	% de cada composto	C.P.M.	% desvio padrão	% de cada composto	C.P.M.	% desvio padrão	% de cada composto
M.I.T	7.220	1,0	17.52%	9,128	0	15,630			
D.I.T	27.265	0,5	66,16%	42.109	0,3	72,11%	36.036	0,5	77,45%
T_{s}	1.926	2,5	4.67%	2.686	10	460%			
T.	2.971	1,5	7,20%	3.344	1,5	5,72%	8.086	1,0	17,38%
I	1.826	2,2	4,43%	1.124	2.5	1 99%	3000	1	717
B.G.	149	2,5		150	2,5	0/ 70.1	140	2,5	4,14%

Abreviações:

Diiodotirosina	Tiroxina	Back Ground ou radiação natural
I	B	11
D.I.T	\mathbf{T}_4	B.G.
Monoiodotirosina	Triiodotironina	Contagem por minuto B.G.
11	II	11
M.I.T.	T_3	C.P.M.

TABELA III

Hidrolisado de tireóide de rato (20μ)

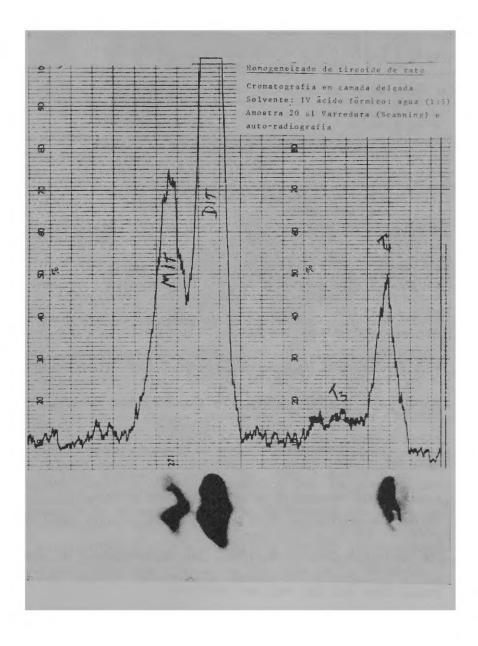

Medidas radioativas das placas de cromatografia em camada delgada em detetor de cintilação tipo poço das regiões correspondentes a cada composto

	Solvente IV			Solve	Solvente V			Solvente VI	
Compostos	C.P.M.	% Desvio padrão	% de cada composto	C.P.M.	% desvio padrão	% de cada composto	C.P.M.	% desvio padrão	% de cada composto
M.I.T D.I.T. T.* I I B.G.	19.723 52.046 2.451 13.040 4.337	0,7 0,2 0,5 0,5 1,5 2,5 5	21,50% 56,80% 2,67% 14,23% 4,73%	11.648 47.587 2.230 11.811 1.389 150	0,7 0,3 1,5 0,7 2,5 2,5	15,60% 63,73% 2,97% 15,80% 1,99%	17.156 31.220 1.623 6.201 662	0,7 0,5 1,0 2,5 2,5	30,17% 54,90% 2,85% 10,90% 11,16%

Abreviações:

M.I.T. = Monoiodotirosina D.I.T. = Diiodotirosina $T_3 = Triiodotironina$ $T_4 = Tiroxina$

Back Ground ou radiação natural II B.G. Contagem por minuto C.P.M.


grande redução bem como a captação do iodo também é reduzida em animais nessas condições.

Barrington e Thorpe (22, 23, 24) demonstraram a presença de iodo ligado na região do endóstilo e faringe de *Ciona intestinalis* L. e ainda a presença de MIT, DIT e tiroxina nos extratos do mesmo animal (25).

Concluindo, a biossíntese tireóidea neste tunicado *Ciona intestinalis* L. está bem estabelecida e com o nosso trabalho selecionamos uma técnica muito boa para separar e identificar a tiroxina; usando a análise por cromatografia em camada delgada, aliada à autorradiografia e varredura dos radiocromatogramas obtivemos uma ótima recuperação das frações hormonais e precursoras usando pequena quantidade de amostra.

O presente método pode ainda ser empregado em qualquer tipo de homogeneizado tireóideo e em particular ao de tunicado.

Com este trabalho confirmamos os de Barrington e Roche no mesmo campo e introduzimos a cromatografia em camada delgada na endocrinologia comparada, usando principalmente material oriundo de tunicados.

TABELA VI

Ciona intestinalis L.: Determinação da radioatividade nas manchas de cromatografia em camada delgada de tiroxina, e 3 monoiodotirosina mais 3-5 diiodotirosina

Média das medidas de 10 animais (20 μ l cada)

	Tiroxina	MIT + DIT
Tunica M =	C.P.M. D.P. 4.668 ± 19 4.717 ± 15 4.699 ± 3 4.695	C.P.M. D.P. 6.062 ± 38 6.133 ± 12 6.152 ± 25 M = 6.116
Corpo M =	2.097 ± 13 2.082 ± 24 2.168 ± 36 2.116	$\begin{array}{rcl} 4.814 & \pm & 16 \\ 4.849 & \pm & 8 \\ 4.848 & \pm & 7 \\ M & = & 4.837 \end{array}$
R.D.F =	150 ± 3	153 ± 2

Abreviações: C.P.M. = contagem por minuto

R.D.F = radiação de fundo

M. = média

BIBLIOGRAFIA

- 1. GROSS, J. & PITT RIVERS, R. (1951) Unidentified iodine compounds in human plasma in addition to thyroxine and iodine. Lancet, 2:766-767.
- SMITH, I. (1960) Chromatographic and Electrophoretic, Techniques. London, William Heinemann Book Ltd., p. 166.
- 3. ROSEMBERG, L. L. & Laroche, G. (1964) Determination of Iodoamino acids composition of rat thyroidal iodoproteins: Some sources of serious error. Endocrinology, 75:776-786.
- 4. RANDERATH, K. (1953) Thin Layer Chromatography. Academic Press, New York and London.
- 5. ZAPPI, E. (1967) Group separation of an aqueous solution of some iodinated amino acids and derivatives by means of solvent extration. J. Chromat., 30:611-613.
- 6. CRAIG, L. C.; GREGORY, J. D. and HAUSMANN, W. (1950) Versatile Laboratory Concentration device. Anal. Chemistry, 22:1462.
- 7. MURRAY, E. V. (1955) An all-glass rotary film evaporator. Anal. Chemistry. 27:1207.
- SHAPIRO. O. & GORDON. A. (1966) An improved method for separation of radioactive thyroid hormone metabolites by thin-layer chromatography. Proc. Soc. Exp. biol. med., 121:577-579.

- 9. OSBORN, R. H. & SIMPSON, T. H. (1969) The characterisation of iodoamino acids and their derivates by thin-layer chromatography. J. Chromat., 40:219-224.
- 10. PATTERSON, S. T. & CLEMENTS, R. L. (1964) The application of paper and thin-layer chromatography to the identification of thyroxine in a feeding stuff additive. Analyst, 89:328-331.
- 11. Hanovia technical handbook "Rapid testing by fluorescence".
- 12. OSBORN, R. H. & SIMPSON, T. H. (1968) Quantitative scanning of ¹²⁵I on thin-layer chromatograms. J. Chromat., 35:436-440.
- 13. WEST, C. D.; WAYNE, A. W. and CHAVRE, V. J. (1965) Thin-layer chromatography for thyroid hormones. Anal. Biochem., 12:41-48.
- 14. MANDL, R. H. & BLOCK, R. (1959) Methods for the qualitative, semi-quantitative determination of iodoamino acids and of inorganic iodide in iodoprotein digest and in human serum. Arch. Bioch. Biophys., 81:25-35.
- 15. CAMERON, A. T. (1914) Contribution to the biochemistry of iodine. I. The distribution of iodine in plant and animal tissues. J. Biol. Chem., 18:335-380.
- 16. CAMERON, A. T. (1915) Contribution to the biochemistry of iodine. II. The distribution of iodine in plant and animal tissues. J. Biol. Chem., 23:1-39.
- 17 BARRINGTON, E. J. W. & FRANCHI, L. L. (1956) Organic binding of iodine in the endostyle of *Ciona intestinalis* L. Nature, 177:432.
- BARRINGTON, E. J. W. (1957) The distribution and significance of organically bound iodine in the ascidian Ciona intestinalis L. J. Mar. Biol. Assoc. U. K., 36:1-16.
- 19. ROCHE, J.; SALVATORE, G.; RAMETTA, G. & VARRONE, S. (1959) Sur la présence d'hormone thyroidiennes (3:5:3' triidothyronine et thyroxine) chez un Tunicier (*Ciona intestinalis* L.). C. R. Soc. Biol., 153:1751-1757.
- ROCHE, J.; SALVATORE, R.; RAMETTA, G. & VARRONE, S. (1961) —
 Iodoprotéines et biosynthése d'hormone thyroidiennes chez un Tunicier Ciona
 intestinalis L. C. R. Soc. Biol., 155:1494-1501.
- 21. ROCHE, J.; SALVATORE, G. & RAMETTA, G. (1962) Sur la présence et la biosynthèse d'hormone thyroidiennes chez un Tunicier, *Ciona intestinalis* L. Biochim. Biophys. Acta, **63**:154-165.
- 22. BARRINGTON, E. J. W. & THORPE, A. (1963) Comparative observations on iodine binding by Saccoglossus horsti Brambell and Goodhart and by the Tunic of Ciona intestinalis L. Gen. Comp. Endocr., 3:166-175.
- 23. BARRINGTON, E. J. W. and THORPE, A. (1965) An autoradiographic study of the Binding of Iodine¹²⁵ in the Endostyle and Pharynx of the Ascidian, *Ciona intestinalis* L. Gen. Comp. Endocr., 5:373-385.
- 24. BARRINGTON, E. J. W. & THORPE, A. (1965) The identification of monoiodotyrosine, diidotyrosine and thyroxine in extracts of the endostyle of the ascidian *Ciona intestinalis* L. Proc. Roy. Soc. B, 163:136-149.