Fractionation and separation of bioactive peptides using natural polymeric membrane

Authors

  • Violina Kalita Dept. of Pharmaceutics, NEF College of Pharmacy, Guwahati, Assam, India; Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar Panikhaiti, Guwahati, Assam, India https://orcid.org/0009-0006-3949-7693
  • Jyotirmoy Bhattacharyya Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar Panikhaiti, Guwahati, Assam, India
  • Sidhartha Jyoti Bora Dept. of Pharmaceutics, NEPEDS College of Pharmaceutical Science, Beltola, Guwahati, Assam, India
  • Rupjyoti Kalita Dept. of Pharmaceutics, NEPEDS College of Pharmaceutical Science, Beltola, Guwahati, Assam, India
  • Partha Pratim Dutta Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar Panikhaiti, Guwahati, Assam, India https://orcid.org/0000-0003-0907-3030

DOI:

https://doi.org/10.1590/

Keywords:

Bioactive peptides, Membrane filtration, Natural polymer

Abstract

The increasing interest in bioactive peptides (BPs) for their potential in disease control and health promotion has been accompanied by a lack of scalable processes for their purification, hindering their commercial production. Membrane filtration, especially using polymeric membranes (PMs), has emerged as a promising technique for BP separation due to its excellent separation performance, ease of fabrication, and flexibility. By utilizing natural sources, such as chitosan, cellulose, lignin, gelatin, alginate, keratin, and silk fibroin, in PM production, the environmental impact of membrane-based separation processes can be reduced while maintaining sustainable, eco-friendly approaches. Natural polymer membranes have exhibited excellent separation performance in terms of molecular weight cut-off and rejection of unwanted compounds, and their performance can be further improved by combining them with nanoparticles or other polymers. This review presents the recent updates on the use of PMs derived from natural sources for the separation of BPs, covering the production and functions of BPs, different membrane separation technologies, and challenges faced during downstream purification.

Downloads

References

Abou-Diab M, Thibodeau J, Deracinois B, Flahaut C, Fliss I, Dhulster P, et al. Bovine hemoglobin enzymatic hydrolysis by a new ecoefficient process-part I: Feasibility of electrodialysis with bipolar membrane and production of neokyotorphin (Α137-141). Membranes. 2020;10(10). https://doi.org/10.3390/membranes10100257

» https://doi.org/10.3390/membranes10100257

Adje EY, Balti R, Kouach M, Dhulster P, Guillochon D, Nedjar-Arroume N. Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin. Int J Biol Macromol. 2011;49(2):143-153. https://doi. org/10.1016/j.ijbiomac.2011.04.004

» https://doi. org/10.1016/j.ijbiomac.2011.04.004

Aguero R, Bringas E, San Roman M F, Ortiz I, Ibanez R. Membrane processes for whey proteins separation and purification. A review. Curr Org Chem. 2017;21(17):1740-52. https://doi.org/10.2174/1385272820666160927122523

» https://doi.org/10.2174/1385272820666160927122523

Aguilar-Toalá JE, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Liceaga AM. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides. 2019;122:170170. https://doi.org/10.1016/j.peptides.2019.170170

» https://doi.org/10.1016/j.peptides.2019.170170

Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Process. 2016;1(98):244-56. https://doi.org/10.1016/j.fbp.2016.02.003

» https://doi.org/10.1016/j.fbp.2016.02.003

Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int J Mol Sci. 2022;23(3):1445. https://doi.org/10.3390/ijms23031445

» https://doi.org/10.3390/ijms23031445

Alavi F, Ciftci O. Purification and fractionation of bioactive peptides through membrane filtration: A critical and application review. Trends Food Sci Technol. 2023;131:118-28. https://doi.org/10.1016/j.tifs.2022.11.024

» https://doi.org/10.1016/j.tifs.2022.11.024

Alipal J, Mohd Pu’ad NAS, Lee TC, Nayan NHM, Sahari N, Basri H, et al. A Review of gelatin: Properties, sources, process, applications, and commercialisation. Mater Today: Proc. 2021;42:240-50. https://doi.org/10.1016/j.matpr.2020.12.922

» https://doi.org/10.1016/j.matpr.2020.12.922

Alzaydi A, Barbhuiya RI, Routray W, Elsayed A, Singh A. Bioactive peptides: Synthesis, applications, and associated challenges. Food Bioeng. 2023;2(3):273-90. https://doi.org/10.1002/fbe2.12057

» https://doi.org/10.1002/fbe2.12057

Anis SF, Hashaikeh R, Hilal N. Microfiltration membrane processes: A review of research trends over the past decade. J Water Process Eng. 2019;32:100941. https://doi.org/10.1016/j.jwpe.2019.100941

» https://doi.org/10.1016/j.jwpe.2019.100941

Arunkumar A, Molitor MS, Etzel MR. Comparison of flat-sheet and spiral-wound negatively-charged wide-pore ultrafiltration membranes for whey protein concentration. Int Dairy J. 2016;56:129-33. https://doi.org/10.1016/j.idairyj.2016.01.012

» https://doi.org/10.1016/j.idairyj.2016.01.012

Avcil M, Akman G, Klokkers J, Jeong D, Çelik A. Efficacy of bioactive peptides loaded on hyaluronic acid microneedle patches: A monocentric clinical study. J Cosmet Dermatol. 2020;19(2):328-37. https://doi.org/10.1111/jocd.13009

» https://doi.org/10.1111/jocd.13009

Bahlakeh G, Rahbarghazi R, Abedelahi A, Sadigh-Eteghad S, Karimipour M. Neurotrophic factor-secreting cells restored endogenous hippocampal neurogenesis through the Wnt/β-catenin signaling pathway in AD model mice. Stem Cell Res Ther. 2022;13(1):1-14. https://doi.org/10.1186/s13287-022-03024-6

» https://doi.org/10.1186/s13287-022-03024-6

Bandehali S, Sanaeepur H, Amooghin AE, Shirazian S, Ramakrishna S. Biodegradable polymers for membrane separation. Sep Purif Technol. 2021;269:118731. https://doi.org/10.1016/j.seppur.2021.118731

» https://doi.org/10.1016/j.seppur.2021.118731

Bazinet L, Firdaous L. Separation of bioactive peptides by membrane processes: technologies and devices. Recent Pat Biotechnol. 2013;7(1):9-27. https://doi.org/10.2174/1872208311307010003

» https://doi.org/10.2174/1872208311307010003

Butylina S, Luque S, Nyström M. Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration. J Membr Sci. 2006;280(1-2):418-26. https://doi.org/10.1016/j.memsci.2006.01.046

» https://doi.org/10.1016/j.memsci.2006.01.046

Castro-Muñoz R, Fíla V. Membrane-based technologies as an emerging tool for separating high-added-value compounds from natural products. Trends Food Sci Technol . 2018;82:8-20. https://doi.org/10.1016/j.tifs.2018.09.017

» https://doi.org/10.1016/j.tifs.2018.09.017

Chen GQ, Qu Y, Gras SL, Kentish SE. Separation technologies for whey protein fractionation. Food Eng Rev. 2023;15:438-65. https://doi.org/10.1007/s12393-022-09330-2

» https://doi.org/10.1007/s12393-022-09330-2

Cheng G, Li Z, Ren S, Han D, Xiao M, Wang S, et al. A robust composite proton exchange membrane of sulfonated poly (fluorenyl ether ketone) with an electrospun polyimide mat for direct methanol fuel cells application. Polymers. 2021;13(4):523. https://doi.org/10.3390/polym13040523

» https://doi.org/10.3390/polym13040523

Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González M L, Flores-Gallegos AC. Enzymatic Hydrolysis and Microbial Fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem Mol Sci. 2021;3:100047. https://doi.org/10.1016/j.fochms.2021.100047

» https://doi.org/10.1016/j.fochms.2021.100047

Dara PK, Mahadevan R, Digita PA, Visnuvinayagam S, Kumar LRG, Mathew S, et al. Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): In vitro studies on antioxidant and antibacterial applications. SN Appl Sci. 2020;2:665. https://doi.org/10.1007/s42452-020-2261-y

» https://doi.org/10.1007/s42452-020-2261-y

De Castro RJS, Sato HH. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int. 2015;74:185-98. https://doi.org/10.1016/j.foodres.2015.05.013

» https://doi.org/10.1016/j.foodres.2015.05.013

Dhineshkumar V, Ramasamy D. Review on membrane technology applications in food and dairy processing. J Appl Biotechnol Bioeng. 2017;3(5):399-407. https://doi.org/10.3390/foods11131823

» https://doi.org/10.3390/foods11131823

Dosmar M, Pinto S, Seymour KJ. Ultrafiltration and Crossflow Microfiltration Filtration. In Filtration and Purification in the Biopharmaceutical Industry, Third Edition 2019 Jun 26 (pp. 383-435). CRC Press.

Fadimu GJ, Le TT, Gill H, Farahnaky A, Olatunde OO, Truong T. Enhancing the biological activities of food protein-derived peptides using non-thermal technologies: A review. Foods. 2022;11(13):1823.

Gao R, Shu W, Shen Y, Sun Q, Jin W, Li D, et al. Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-Stimulated RAW264.7 macrophages via MAPK and NF-ΚB pathways. Food Sci Hum Wellness. 2021;10(1):103-11. https://doi.org/10.1016/j.fshw.2020.04.014

» https://doi.org/10.1016/j.fshw.2020.04.014

Gassling V, Douglas T, Warnke PH, Açil Y, Wiltfang J, Becker ST. Platelet‐rich fibrin membranes as scaffolds for periosteal tissue engineering. Clin Oral Implants Res. 2010;21(5):543-9. https://doi.org/10.1111/j.1600-0501.2009.01900.x

» https://doi.org/10.1111/j.1600-0501.2009.01900.x

Ge L, Sadeghirad B, Ball GDC, da Costa BR, Hitchcock CL, Svendrovski A, et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ. 2020;369:m696. https://doi.org/10.1136/bmj.m696

» https://doi.org/10.1136/bmj.m696

Gede Wenten I, Friatnasary DL, Khoiruddin K, Setiadi T, Boopathy R. Extractive Membrane Bioreactor (EMBR): Recent Advances and Applications. Bioresour Technol. 2020;297:122424. https://doi.org/10.1016/j.biortech.2019.122424

» https://doi.org/10.1016/j.biortech.2019.122424

Geoffroy TR, Thibodeau J, Faucher M, Langevin ME, Lutin F, Bazinet L. Relationship between feed concentration and bioactive cationic peptide recovery: Impact on ecoefficiency of EDUF at semi-industrial scale. Sep Purif Technol . 2022;286:120403. https://doi.org/10.1016/j.seppur.2021.120403

» https://doi.org/10.1016/j.seppur.2021.120403

Grabska-Zielińska S, Sionkowska A, Carvalho Â, Monteiro FJ. Biomaterials with potential use in bone tissue regeneration-collagen/chitosan/silk fibroin scaffolds cross-linked by EDC/NHS. Materials. 2021;14(5):1105. https://doi.org/10.3390/ma14051105

» https://doi.org/10.3390/ma14051105

Guo Q, Wu X, Ji Y, Hao Y, Liao S, Cui Z, et al. PH-Responsive Nanofiltration Membrane Containing Chitosan for Dye Separation. J Membr Sci . 2021;635:119445. https://doi.org/10.1016/j.memsci.2021.119445

» https://doi.org/10.1016/j.memsci.2021.119445

Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr. 2018;58(18):3097-129. https://doi.org/10.1080/10408398.2017.1352564

» https://doi.org/10.1080/10408398.2017.1352564

Hayes M, Bastiaens L, Gouveia L, Gkelis S, Skomedal H, Skjanes K, et al. Microalgal bioactive compounds including protein, peptides, and pigments: applications, opportunities, and challenges during biorefinery processes. Novel Proteins Food Pharm Agric: Sources Applications Advances. 2018;3:239-55. https://doi.org/10.1002/9781119385332.ch12

» https://doi.org/10.1002/9781119385332.ch12

He R, Girgih AT, Rozoy E, Bazinet L, Ju XR, Aluko RE. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes. Food Chem. 2016;197:1008-14. https://doi.org/10.1016/j.foodchem.2015.11.081

» https://doi.org/10.1016/j.foodchem.2015.11.081

Hernández Vargas JA, Trujillo-Cáceres SJ, Uriza-Pinzón JP, Franco OH. Maximizing the effects of physical activity on cardiovascular health: A matter of time. Eur J Prev Cardiol. 2023;30(3):230-31. https://doi.org/10.1093/eurjpc/zwac288

» https://doi.org/10.1093/eurjpc/zwac288

Huang H, Cen J, Yang D, Li L, Li C, Yang X, et al. Isolation and characterization of antioxidant peptides from oyster (Crassostrea rivularis) protein enzymatic hydrolysates. Food Sci Nutr. 2023;11(1):261. https://doi.org/10.1002/fsn3.3058

» https://doi.org/10.1002/fsn3.3058

Jayaprakash R, Perera CO. Partial purification and characterization of bioactive peptides from cooked New Zealand Green-Lipped Mussel (Perna Canaliculus) protein hydrolyzates. Foods. 2020;9(7):879. https://doi.org/10.3390/foods9070879

» https://doi.org/10.3390/foods9070879

Jenab A, Roghanian R, Emtiazi G. Bacterial natural compounds with anti-inflammatory and immunomodulatory properties (mini review). Drug Des Devel Ther. 2020;14:3787-801. https://doi.org/10.2147/ DDDT.S261283

» https://doi.org/10.2147/ DDDT.S261283

Ji D, Xu M, Udenigwe CC, Agyei D. Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome. Curr Res Food Sci. 2020;3:41-50. https://doi.org/10.1016/j.crfs.2020.03.001

» https://doi.org/10.1016/j.crfs.2020.03.001

Jiang F, Liu K, Zhao M, Tao X, Hu X, Lu S. Tunable high-molecular-weight silk fibroin polypeptide materials: fabrication and self-assembly mechanism. ACS Appl Bio Mater. 2020;3(5):3248-59. https://doi.org/10.1021/acsabm.0c00231

» https://doi.org/10.1021/acsabm.0c00231

Jiang W, Ren K, Yang Z, Fang Z, Li Y, Xiang X, et al. Purification, identification and molecular docking of immunomodulatory peptides from the heads of Litopenaeus Vannamei. Foods. 2022;11(20):3309. https://doi.org/10.3390/foods11203309

» https://doi.org/10.3390/foods11203309

Jiménez-Gómez CP, Cecilia JA. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules. 2020;25(17):3981. https://doi.org/10.3390/molecules25173981

» https://doi.org/10.3390/molecules25173981

Kawase T. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: basic principles and concepts underlying recent advances. Odontology. 2015;103:126-35. https://doi.org/10.1007/s10266-015-0209-2

» https://doi.org/10.1007/s10266-015-0209-2

Khulbe KC, Matsuura T. Nanotechnology in Membrane Processes; Lecture Notes in Nanoscale Science and Technology. Springer International Publishing: Cham. 2021;29. https://doi.org/10.1007/978-3-030-64183-2

» https://doi.org/10.1007/978-3-030-64183-2

Kim D, Salazar OR, Nunes SP. Membrane manufacture for peptide separation. Green Chem. 2016;18(19):5151-9. https://doi.org/10.1039/C6GC01259K

» https://doi.org/10.1039/C6GC01259K

Kirshanov K, Toms R, Aliev G, Naumova A, Melnikov P, Gervald A. Recent developments and perspectives of Recycled Poly(Ethylene Terephthalate)-Based membranes: A review. Membranes. 2022;12(11):1105. https://doi.org/10.3390/membranes12111105

» https://doi.org/10.3390/membranes12111105

Kitts DD, Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des. 2003;9(16):1309-23. https://doi.org/10.2174/1381612033454883

» https://doi.org/10.2174/1381612033454883

Koirala S, Prathumpai W, Anal AK. Effect of ultrasonication pretreatment followed by enzymatic hydrolysis of caprine milk proteins and on antioxidant and angiotensin converting enzyme (ACE) inhibitory activity of peptides thus produced. Int Dairy J . 2021;118:105026. https://doi.org/10.1016/j.idairyj.2021.105026

» https://doi.org/10.1016/j.idairyj.2021.105026

Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality. Int Dairy J . 2006;16(9):945-60. https://doi.org/10.1016/j.idairyj.2005.10.012

» https://doi.org/10.1016/j.idairyj.2005.10.012

Krupková A, Müllerová M, Petrickovic R, Strašák T. On the edge between organic solvent nanofiltration and ultrafiltration: Characterization of regenerated cellulose membrane with aspect on dendrimer purification and recycling. Sep Purif Technol . 2023;310:123141. https://doi.org/10.1016/j.seppur.2023.123141

» https://doi.org/10.1016/j.seppur.2023.123141

Kucera J. Biofouling of polyamide membranes: Fouling mechanisms, current mitigation and cleaning strategies, and future prospects. Membranes. 2019;9(9):111. https://doi.org/10.3390/membranes9090111

» https://doi.org/10.3390/membranes9090111

Kumar A, Kumar J, Bhaskar T. Utilization of lignin: A sustainable and eco-friendly approach. Journal of the Energy Institute. 2020;93(1):235-71. https://doi.org/10.1016/j.joei.2019.03.005

» https://doi.org/10.1016/j.joei.2019.03.005

Langevin ME, Roblet C, Moresoli C, Ramassamy C, Bazinet L. Comparative application of pressure-and electrically-driven membrane processes for isolation of bioactive peptides from soy protein hydrolysate. J Membr Sci . 2012;1(403):15-24. https://doi.org/10.1016/j.memsci.2012.02.005

» https://doi.org/10.1016/j.memsci.2012.02.005

Lemes AC, Braga AR, Gautério GV, Fernandes KF, Egea MB. Application of membrane technology for production of bioactive peptides. In Bioactive Peptides. 2021 Jun 14 (pp. 253-279). CRC Press. eBook ISBN9781003052777.

Li S, Liu Y, Wong DA, Yang J. Recent advances in polymer-inorganic mixed matrix membranes for CO2 separation. Polymers. 2021;13(15):2539. https://doi.org/10.3390/polym13152539

» https://doi.org/10.3390/polym13152539

Li Z, Zhang B, Wang N, Zuo Z, Wei H, Zhao F. A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota. Gut. 2023;72(4):686-98. https://doi.org/10.1136/gutjnl-2022-328035

» https://doi.org/10.1136/gutjnl-2022-328035

Liang T, Lu H, Ma J, Sun L, Wang J. Progress on membrane technology for separating bioactive peptides. J Food Eng. 2023;340:111321. https://doi.org/10.1016/j.jfoodeng.2022.111321

» https://doi.org/10.1016/j.jfoodeng.2022.111321

Liu C, Monson CF, Yang T, Pace H, Cremer PS. Protein separation by electrophoretic-electroosmotic focusing on supported lipid bilayers. Anal Chem. 2011;83(20):7876-80. https://doi.org/10.1021/ac201768k

» https://doi.org/10.1021/ac201768k

Ma R, Chen Q, Dai Y, Huang Y, Hou Q, Huang Y, et al. Identification of novel antioxidant peptides from sea squirt (Halocynthia roretzi) and its neuroprotective effect in 6-OHDA-induced neurotoxicity. Food Funct. 2022;13(11):6008-21. https://doi.org/10.1039/ D2FO00729K

» https://doi.org/10.1039/ D2FO00729K

Marciniak A, Suwal S, Naderi N, Pouliot Y, Doyen A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends Food Sci Technol . 2018;80:187-98. https://doi.org/10.1016/j.tifs.2018.08.013

» https://doi.org/10.1016/j.tifs.2018.08.013

Marie G, Perreault V, Henaux L, Carnovale V, Aluko R, Marette A, et al. Impact of a high hydrostatic pressure pretreatment on the separation of bioactive peptides from flaxseed protein hydrolysates by electrodialysis with ultrafiltration membranes. Sep Purif Technol . 2019;211:242-51. https://doi.org/10.1016/j.seppur.2018.09.063

» https://doi.org/10.1016/j.seppur.2018.09.063

Mehta A, Zydney AL. Permeability and selectivity analysis for ultrafiltration membranes. J Membr Sci . 2005;249(1-2):245-9. https://doi.org/10.1016/j.memsci.2004.09.040

» https://doi.org/10.1016/j.memsci.2004.09.040

Mikhaylin S, Patouillard L, Margni M, Bazinet L. Milk Protein production by a more environmentally sustainable process: Bipolar membrane electrodialysis coupled with ultrafiltration. Green Chem . 2018;20(2):449-56. https://doi.org/10.1039/C7GC02154B

» https://doi.org/10.1039/C7GC02154B

Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Surface modification of water purification membranes. Angew Chem, Int Ed. 2017;56(17):4662-711. https://doi. org/10.1002/anie.201601509

» https://doi. org/10.1002/anie.201601509

Mohammad A, Ng C, Ying Pei L, Ng G. Ultrafiltration in food processing industry: Review on application, membrane fouling, and fouling control. Food Bioproc Tech. 2012;5:1143-56. https://doi.org/10.1007/s11947-012-0806-9

» https://doi.org/10.1007/s11947-012-0806-9

Morales-Jiménez M, Palacio DA, Palencia M, Meléndrez MF, Rivas BL. Bio-based polymeric membranes: Development and environmental applications. Membranes. 2023;13(7):625. https://doi.org/10.3390/membranes13070625

» https://doi.org/10.3390/membranes13070625

Mosser M, Kapel R, Chevalot I, Olmos E, Marc I, Marc A, Oriol E. Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement. Biotechnol Prog. 2015;31(4):875-82. https://doi.org/10.1002/btpr.2110

» https://doi.org/10.1002/btpr.2110

Mostashari P, Marszałek K, Aliyeva A, Mousavi Khaneghah A. The impact of processing and extraction methods on the allergenicity of targeted protein quantification as well as bioactive peptides derived from egg. Molecules. 2023;28(6):2658. https://doi.org/10.3390/molecules28062658

» https://doi.org/10.3390/molecules28062658

Najafian L. A review of bioactive peptides as functional food ingredients: mechanisms of action and their applications in active packaging and food quality improvement. Food Funct . 2023;(13). https://doi.org/10.1039/D3FO00362K

» https://doi.org/10.1039/D3FO00362K

Nazir A, Khan K, Maan A, Zia R, Giorno L, Schroën K. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends Food Sci Technol . 2019;86:426-38. https://doi.org/10.1016/j.tifs.2019.02.049

» https://doi.org/10.1016/j.tifs.2019.02.049

Okagu IU, Ndefo JC, Aham EC, Obeme-Nmom JI, Agboinghale PE, Aguchem RN, et al. Lupin-derived bioactive peptides: Intestinal transport, bioavailability and health benefits. Nutrients. 2021;13(9):3266. https://doi.org/10.3390/nu13093266

» https://doi.org/10.3390/nu13093266

Pei J, Gao X, Pan D, Hua Y, He J, Liu Z, et al. Advances in the stability challenges of bioactive peptides and improvement strategies. Curr Res Food Sci . 2022;5:2162-70. https://doi.org/10.1016/j.crfs.2022.10.031

» https://doi.org/10.1016/j.crfs.2022.10.031

Pimentel FB, Alves RC, Harnedy PA, FitzGerald RJ, Oliveira MBPP. Macroalgal-derived protein hydrolysates and bioactive peptides: enzymatic release and potential health enhancing properties. Trends Food Sci Technol . 2019;93:106-24. https://doi.org/10.1016/j.tifs.2019.09.006

» https://doi.org/10.1016/j.tifs.2019.09.006

Piovesana S, Capriotti A, Cavaliere C, la barbera G, Montone C, Zenezini Chiozzi R, et al. Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Anal Bioanal Chem. 2018;410:3425-44. https://doi.org/10.1007/s00216-018-0852-x

» https://doi.org/10.1007/s00216-018-0852-x

Plaxton WC. Avoiding proteolysis during the extraction and purification of active plant enzymes. Plant Cell Physiol. 2019;60(4):715-24. https://doi.org/10.1093/pcp/pcz028

» https://doi.org/10.1093/pcp/pcz028

Poolachira S, Velmurugan S. Effect of solvents in the formation of pes-based asymmetric flat sheet membranes in phase inversion method: Phase separation and rheological studies. Iran Polym J. 2023;32(3):365-76. https://doi.org/10.1007/s13726-022-01131-y

» https://doi.org/10.1007/s13726-022-01131-y

Punia H, Tokas J, Malik A, Sangwan S, Baloda S, Singh N, et al. Identification and detection of bioactive peptides in milk and dairy products: Remarks about agro-foods. Molecules. 2020;25(15):3328. https://doi.org/10.3390/molecules25153328

» https://doi.org/10.3390/molecules25153328

Qasem N, Mohammed R, Lawal D. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water. 2021;4(1):36. https://doi.org/10.1038/s41545-021-00127-0

» https://doi.org/10.1038/s41545-021-00127-0

Qiu Y, Depuydt S, Ren LF, Zhong C, Wu C, Shao J, et al. Progress of ultrafiltration-based technology in ion removal and recovery: enhanced membranes and integrated processes. ACS EST Water. 2023;3(7):1702-19. https://doi.org/10.1021/acsestwater.2c00625

» https://doi.org/10.1021/acsestwater.2c00625

Radu ER, Voicu SI, Thakur VK. Polymeric membranes for biomedical applications. Polymers. 2023;15(3):619. https://doi.org/10.3390/polym15030619

» https://doi.org/10.3390/polym15030619

Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev. 2014;43(1):444-72. https://doi.org/10.1039/C3CS60299K

» https://doi.org/10.1039/C3CS60299K

Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA. Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers. 2023;15(13):2867. https://doi.org/10.3390/polym15132867

» https://doi.org/10.3390/polym15132867

Ratnaningsih E, Reynard R, Khoiruddin K, Wenten IG, Boopathy R. Recent advancements of UF-based separation for selective enrichment of proteins and bioactive peptides-a review. Appl Sci. 2021;11(3):1078. https://doi.org/10.3390/app11031078

» https://doi.org/10.3390/app11031078

Rektor A, Vatai G. Membrane filtration of mozzarella whey. Desalination. 2004;162:279-86. https://doi.org/10.1016/S0011-9164(04)00052-9

» https://doi.org/10.1016/S0011-9164(04)00052-9

Reyes-Díaz A, Mata-Haro V, Hernández J, González-Córdova AF, Hernández-Mendoza A, Reyes-Díaz R, et al. Milk fermented by specific lactobacillus strains regulates the serum levels of IL-6, TNF-α and IL-10 cytokines in a LPS-stimulated murine model. Nutrients. 2018;29;10(6):691. https://doi.org/10.3390/nu10060691

» https://doi.org/10.3390/nu10060691

Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, Peredo-Lovillo A. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chem: X. 2022;13:100196. https://doi.org/10.1016/j.fochx.2021.100196

» https://doi.org/10.1016/j.fochx.2021.100196

Sayyed AJ, Pinjari DV, Sonawane SH, Bhanvase BA, Sheikh J, Sillanpää M. Cellulose-based nanomaterials for water and wastewater treatments: A review. J Environ Chem Eng. 2021;9(6):106626. https://doi.org/10.1016/j.jece.2021.106626

» https://doi.org/10.1016/j.jece.2021.106626

Shahidi F, Zhong Y. Bioactive peptides. J AOAC Int. 2008;91(4):914-31. https://doi.org/10.1093/jaoac/91.4.914

» https://doi.org/10.1093/jaoac/91.4.914

Sitanggang AB, Sumitra J, Budijanto S. Continuous production of tempe-based bioactive peptides using an automated enzymatic membrane reactor. IFSET. 2021;68:102639. https://doi.org/10.1016/j.ifset.2021.102639

» https://doi.org/10.1016/j.ifset.2021.102639

Song W, Su Y, Chen X, Ding L, Wan Y. Rapid concentration of protein solution by a crossflow electro-ultrafiltration process. Sep Purif Technol . 2010;73(2):310-8. https://doi.org/10.1016/j.seppur.2010.04.018

» https://doi.org/10.1016/j.seppur.2010.04.018

Sun W, Zhang N, Li Q, Li X, Chen S Zong, et al. Bioinspired lignin-based loose nanofiltration membrane with excellent acid, fouling, and chlorine resistances toward dye/salt separation. J Membr Sci . 2023;15(670):121372. https://doi.org/10.1016/j.memsci.2023.121372

» https://doi.org/10.1016/j.memsci.2023.121372

Suwal S, Roblet C, Doyen A, Beaulieu L, Legault J, Bazinet L. Electrodialytic separation of peptides from snow crab by-product hydrolysate: Effect of cell configuration on peptide selectivity and local electric field. Sep Purif Technol . 2014;127:29-38. https://doi.org/10.1016/j.seppur.2014.02.018

» https://doi.org/10.1016/j.seppur.2014.02.018

Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell. 2012;148(4):664-78. https://doi.org/10.1016/j.cell.2011.12.029

» https://doi.org/10.1016/j.cell.2011.12.029

Teng K,An Q, Chen Y, Zhang Y, Zhao Y. Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses. ACS Biomater Sci Eng. 2021;7(4):1302-37. https://doi.org/10.1021/acsbiomaterials.1c00116

» https://doi.org/10.1021/acsbiomaterials.1c00116

Thimmiah BR, Chien BTC, Fui KS, Yon LS, Nallathambi G, Jeevanandam J, et al. Nanoformulation of peptides for pharmaceutical applications: In vitro and in vivo perspectives. Appl Sci . 2022;12(24):12777. https://doi.org/10.3390/app122412777

» https://doi.org/10.3390/app122412777

Tinoco A, Martins M, Cavaco-Paulo A, Ribeiro A. Biotechnology of functional proteins and peptides for hair cosmetic formulations. Trends Biotechnol. 2022;40(5):591-605. https://doi.org/10.1016/j.tibtech.2021.09.010

» https://doi.org/10.1016/j.tibtech.2021.09.010

Tomašević I, Putnik P, Valjak F, Pavlić B, Šojić B, Bebek Markovinović A, et al. 3D Printing as novel tool for fruit-based functional food production. Curr Opin Food Sci. 2021;41:138-45. https://doi.org/10.1016/j.cofs.2021.03.015

» https://doi.org/10.1016/j.cofs.2021.03.015

Venugopal V. Green processing of seafood waste biomass towards blue economy. Curr Res Environ Sustainability. 2022;4:100164. https://doi.org/10.1016/j.crsust.2022.100164

» https://doi.org/10.1016/j.crsust.2022.100164

Vieira A, Fasura Balthazar C, Guimarães J, Rocha R, Pagani M, Esmerino E, et al. Advantages of microfiltration processing of goat whey orange juice beverage. Food Res Int . 2020;132:109060. https://doi.org/10.1016/j.foodres.2020.109060

» https://doi.org/10.1016/j.foodres.2020.109060

Wang B, Xie N, Li B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. J Food Biochem. 2019;43(1):e12571.

Wang R, Zhang J, Tang CY, Lin S. Understanding selectivity in solute-solute separation: definitions, measurements, and comparability. Environ Sci Technol. 2022;56(4):2605-16. https://doi.org/10.1021/acs.est.1c06176

» https://doi.org/10.1021/acs.est.1c06176

Wang Z, Li S, Ge S, Lin S. Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. J Agric Food Chem . 2020;68(11):3330-43. https://doi.org/10.1021/acs.jafc.9b06574

» https://doi.org/10.1021/acs.jafc.9b06574

Wen-Qiong W, Lan-Wei Z, Xue H, Yi L. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking. Food chem. 2017;215:31-40. https://doi.org/10.1016/j.foodchem.2016.07.057

» https://doi.org/10.1016/j.foodchem.2016.07.057

Wenten IG, Khoiruddin K, Reynard R, Lugito G, Julian H. Advancement of forward osmosis (FO) membrane for fruit juice concentration. J Food Eng . 2021;290:110216. https://doi.org/10.1016/j.jfoodeng.2020.110216

» https://doi.org/10.1016/j.jfoodeng.2020.110216

Wu Q, Guo Z, Zhou Z, Jin M, Li Q, Zhou X. Recent advances in bioactive peptides from cereal-derived food stuffs. Int J Food Sci Nutr . 2022;73(7):875-88. https://doi.org/10.1080/09637486.2022.2104226

» https://doi.org/10.1080/09637486.2022.2104226

Xiao Z, Sun M, Li T, Zhao M, Yin H. Mannuronan C-5 Epimerases: Review of activity assays, enzyme characteristics, structure, and mechanism. Catalysts. 2023;13(1):28. https://doi.org/10.3390/catal13010028

» https://doi.org/10.3390/catal13010028

Yan RR, Gong JS, Su C, Liu YL, Qian JY, Xu ZH, et al. Preparation and applications of keratin biomaterials from natural keratin wastes. Appl Microbiol Biotechnol. 2022;106(7):2349-66. https://doi.org/10.1007/s00253-022-11882-6

» https://doi.org/10.1007/s00253-022-11882-6

Yea CS, Ahmadi R, Zarei M, Muhialdin BJ. Fractionation and Purification of Bioactive Peptides. In Bioactive Peptides from Food. 2022:267-298. CRC Press. eBook ISBN 9781003106524.

Ye H, Tao X, Zhang W, Chen Y, Yu Q, Xie J. Food-derived bioactive peptides: Production, biological activities, opportunities and challenges. J Future Foods. 2022;2(4):294-306.

Yu WH, Qiu ZL, Wang JR, Shen YJ, Han J, Fang LF, et al. Novel nanofiltration membrane prepared by amphiphilic random copolymer nanoparticles packing for high-efficiency biomolecules separation. Chem Eng J. 2022;430:132914. https://doi.org/10.1016/j.cej.2021.132914

» https://doi.org/10.1016/j.cej.2021.132914

Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: A review. Biomater Sci. 2021;9(5):1583-97. https://doi.org/10.1039/ D0BM01403F

» https://doi.org/10.1039/ D0BM01403F

Zheng X, Zhu L, Li T, Xu W, Liu D, Sheng J, et al. Improve stability of bioactive peptides by enzymatic modular synthesis of peptides with O-linked sialyl lewis x. ACS Catalysis. 2021;11(13):8042-8. https://doi.org/10.1016/j.jfutfo.2022.08.002

» https://doi.org/10.1016/j.jfutfo.2022.08.002

Zong D, Zhang X, Yin X, Wang F, Yu J, Zhang S, et al. Electrospun fibrous sponges: Principle, fabrication, and applications. Adv Fiber Mater. 2022;4(6):1434-62. https:// doi.org/10.1007/s42765-022-00202-2

» https:// doi.org/10.1007/s42765-022-00202-2

Downloads

Published

2025-02-11

Issue

Section

Review

How to Cite

Fractionation and separation of bioactive peptides using natural polymeric membrane. (2025). Brazilian Journal of Pharmaceutical Sciences, 61. https://doi.org/10.1590/