Search for new antimicrobials against extended spectrum β-lactamase-positive Escherichia coli
Potential of fungi from the phylum Ascomycota
DOI:
https://doi.org/10.1590/Palavras-chave:
Escherichia coli, Resistance, Antimicrobial drug, Ascomycota, Drug developmentResumo
Pathogenic strains of Escherichia coli can cause gastrointestinal infections, urinary tract infections (UTIs), bacteremia, and other severe infections. Some isolates of this species are capable of producing extended-spectrum β-lactamase (ESBL) enzymes, which mediate resistance against penicillin derivates and cephalosporins. Fungi of the Ascomycota phylum are known to produce antibiotics from different classes with activity against various bacterial agents. Among them, the genera Penicillium, Cephalosporium, Acremonium and Fusidium are known for the production of antimicrobial substances such as penicillin derivates, cephalosporins and fusidic acid. Currently, the search for new antimicrobials produced by species of the Ascomycota phylum includes the assessment of less explored habitats including aquatic environments, extreme environments, and the interior of plants/animals. The genus Penicillium remains promising for the discovery of new antimicrobial substances against resistant bacteria. In addition, those fungi have also been investigated regarding their usefulness for the biosynthesis of nanoparticles with antimicrobial activity. This narrative review introduces clinically relevant Escherichia coli pathovars, the historical contributions of the phylum Ascomycota to the production of antimicrobials, aspects of bioprocesses in the production of antimicrobial metabolites and different approaches of research targeting new antimicrobials such as screenings for fungi in environments not yet studied and the green synthesis mediated by fungi with antimicrobial activity.
Downloads
Referências
Adrio JL, Demain AL. Fungal biotechnology, International Microbiology, 6, Springer, 2003, 191-9.
Akther T, Ranjani S, Hemalatha S. Nanoparticles engineered from endophytic fungi (Botryosphaeria rhodina) against ESBL-producing pathogenic multidrug-resistant E coli. Environ Sci Eur. 2021; 33: 1-8. doi.org/10.1186/s12302-021-00524-9.
» https://doi.org/10.1186/s12302-021-00524-9
Bastidas-Caldes C, Romero-Alvarez D, Valdez-Vélez V, Morales RD, Montalvo-Hernández A, Gomes-Dias C. Extended-spectrum beta-lactamases producing Escherichia coli in South America: a systematic review with a One Health perspective. Infection and drug resistance, 2022; 5759-5779. doi: 10.2147/IDR.S371845.
» https://doi.org/10.2147/IDR.S371845
Bhat BA, Mir WR, Sheikh BA, Rather MA, Mir MA. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India. J Ethnopharmacol. 2022; 291: 115046.
Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M b-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017; 72: 2145-55. doi.org/10.1093/jac/dkx146.
» https://doi.org/10.1093/jac/dkx146
Blackwell M. The fungi: 1, 2, 3 5.1 million species? Am J Bot. 2011; 98: 426-38.
Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14: 933-51. doi: 10.1128/CMR.14.4.933-951.2001.
» https://doi.org/10.1128/CMR.14.4.933-951.2001
Centers for Disease Control and Prevention. CDC. US Dep Heal Hum Serv Centres Dis Control Prev; 2019: 150. Avaiable from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
» https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-antimicrobial resistance, 2021; 3(3), dlab092. doi: 10.1093/jacamr/dlab092.
» https://doi.org/10.1093/jacamr/dlab092
Chen L, Kumar S, Wu H. A review of current antibiotic resistance and promising antibiotics with novel modes of action to combat antibiotic resistance. Archives of Microbiology, 2023; 205(11): 356.
Chowdhury S, Basu A, Kundu S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina paseolina. Nanoscale Res Lett. 2014; 9(1): 365. doi 10.1186/1556-276X-9-365.
» https://doi.org/10.1186/1556-276X-9-365
Dash S, Sahu SK, Paty BP. Phenotypic detection of ESBL-producing Enterobacteriaceae using combined disk diffusion, ESBL HiCrome agar, and E-test: A comparative study. Journal of Dr. NTR University of Health Sciences. 2022; 11(3): 200-207. doi: 10.4103/jdrntruhs.jdrntruhs_105_21.
» https://doi.org/10.4103/jdrntruhs.jdrntruhs_105_21
Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965; 208: 239-241. doi: 10.1038/208239a0.
» https://doi.org/10.1038/208239a0
Di Lodovico S, Fasciana T, Di Giulio M, Cellini L, Giammanco A, Rossolini GM. Spread of Multidrug-Resistant Microorganisms. Antibiotics. 2022; 11(7): 832. doi 10.3390/antibiotics11070832.
» https://doi.org/10.3390/antibiotics11070832
Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rui M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol. 2011; 90: 1609-24. doi.org/10.1007/s00253-011-3249-8. doi 10.1007/s00253-011-3249-8.
» https://doi.org/10.1007/s00253-011-3249-8
European Center for Disease Prevention and Control. ECDC; 2018. Avaiable from: https://www.ecdc.europa.eu/en/news-events/33000-people-die-every-year-due-infections-antibiotic-resistant-bacteria
Fair RJ, Tor Y. Perspectives in Medicinal Chemistry Antibiotics and Bacterial Resistance in the 21st Century. Perspect Medicin Chem. 2014; 6: 25-64. doi.org/10.4137/PMC.S14459.
» https://doi.org/10.4137/PMC.S14459
Fong IW. Antimicrobial Resistance: A Crisis in the Making. New Antimicrobials: For the Present and the Future. 2023; 1-21.
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS microbiology reviews, 2022; 46(6): p. fuac031. doi.org/10.1093/femsre/fuac031.
» https://doi.org/10.1093/femsre/fuac031
Global Research on Antimicrobial Resistance. GRAM. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis; 2019. Avaiable from https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext
» https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext
Grossart H-P, Wyngaert S Van den, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019; 17(6): 339-54.
Guilger-Casagrande M, Lima. R de. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019; 7: 287. doi.org/10.3389/fbioe.2019.00287.
» https://doi.org/10.3389/fbioe.2019.00287
Horesh G, Blackwell GA, Tonkin-Hill G, Corander J, Heinz E, Thomson NR. A comprehensive and high-quality collection of Escherichia coli genomes and their genes. Microbial genomics. 2021; 7(2). doi.org/10.1099/mgen.0.000499.
» https://doi.org/10.1099/mgen.0.000499
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019; 51: 72-80. doi.org/10.1016/j.mib.2019.10.008.
» https://doi.org/10.1016/j.mib.2019.10.008
Kirk P, Cannon P, Minter D, Stalpers J. Ainsworth & Bisby’s Dictionary of the Fungi. 10th ed. 2008.
Kim D, Kim S, Kwon Y, Kim Y, Park H, Kwak K. Structural Insights for β-Lactam Antibiotics. Biomolecules & Therapeutics. 2023; 31(2): 141. doi: 10.4062/biomolther.2023.008
» https://doi.org/10.4062/biomolther.2023.008
Kliebe C. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother. 1985; 28: 302-7. doi.org/10.1128/aac.28.2.302.
» https://doi.org/10.1128/aac.28.2.302
Kumla D, Dethoup T, Pereira JA, Freitas-silva J, Costa PM, Silva AMS, et al. A Xanthonopyrone SPF-3059-26 from the Culture of Penicillium erubescens KUFA 0220 and Antibacterial Activity Evaluation of Some of Its Constituents. Molecules. 2019; 24: 1-10. doi.org/10.3390/molecules24010208.
» https://doi.org/10.3390/molecules24010208
Kumla D, Sousa E, Marengo A, Dethoup T, Gales L, Freitas-Silva J, et al. Phytochemistry 1,3-Dioxepine and spiropyran derivatives of viomellein and other dimeric naphthopyranones from cultures of Aspergillus elegans KUFA0015 and their antibacterial activity. Phytochemistry. 2021; 181. doi.org/10.1016/j.phytochem.2020.112575.
» https://doi.org/10.1016/j.phytochem.2020.112575
Liang M, Wei S, Jian-Xin L, Xiao-Xi Z, Zhi H, Wen L. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater Sci Eng. 2017; 77: 963-71. doi.org/10.1016/j.msec.2017.03.294.
» https://doi.org/10.1016/j.msec.2017.03.294
Lin S, Yu H, Yang B, Li F, Chen X, Li H, et al. Reisolation and Configurational Reinvestigation of Cottoquinazolines E−G from an Arthropod-Derived Strain of the Fungus Neosartorya fischeri. Nat Prod. 2020; 83: 169-73. doi.org/10.1021/acs.jnatprod.9b01000.
» https://doi.org/10.1021/acs.jnatprod.9b01000
Liu M, He Y, Shen L, Anbari WHA, Li H, Wang J, et al. Asperteramide A, an Unusual N-Phenyl-Carbamic Acid Methyl Ester Trimer Isolated from the Coral-Derived Fungus Aspergillus Terreus. European J Org Chem. 2019; 18: 2928-32.
Mayegowda SB, Roy A, Manjula NG, Pandit S, Alghamdi S, Almehmadi M. Eco-friendly synthesized nanoparticles as antimicrobial agents: an updated review. Frontiers in Cellular and Infection Microbiology, 2023; 13. doi 10.3389/fcimb.2023.1224778.
» https://doi.org/10.3389/fcimb.2023.1224778
Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry. 2021; 10: 726-749.
Naqvi SZH, Kiran U, Ali MI, Jamal A, Hameed A, Ahmed S. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomed. 2013; 8: 3187-95. doi.org/10.2147/IJN.S49284.
» https://doi.org/10.2147/IJN.S49284
Nweze JA, Mbaoji FN, Huang G, Li Y, Yang L, Zhang Y, et al. Antibiotics Development and the Potentials of Marine-Derived Compounds to Stem the Tide of and Protozoa. Mar Drugs. 2020; 18: 145. doi.org/10.3390/md18030145.
» https://doi.org/10.3390/md18030145
Pereira JN, Bon EP da S, Ferrara MA. Tecnologia de Bioprocessos. Séries Biotecnol. Rio de Janeiro: 2008.
Pitout JD. Extraintestinal pathogenic Escherichia coli: an update on antimicrobial resistance, laboratory diagnosis and treatment. Expert Rev Anti Infect Ther. 2012; 10: 1165-76.
Qaralleh H, Khleifat KM, Al-limoun MO, Alzedaneen FY, Al-tawarah N. Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi Tritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity. Adv Nat Sci Nanosci Nanotechnol. 2019; 10: 11.
Rana C, Rajput S, Behera M, Gautam D, Vikas V, Vats A, et al. Comparative Immunology, Microbiology and Infectious Diseases Global epidemiology of CTX-M-type β -lactam resistance in human and animal. Comp Immunol Microbiol Infect Dis. 2022; 86: 101-815. doi.org/10.1016/j.cimid.2022.101815.
» https://doi.org/10.1016/j.cimid.2022.101815
Rani R, Sharma D, Chaturvedi M, Yadav JP. Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus. J Nanomed Nanotechnol. 2017; 8.
Samuel P, Maheswari M, Vijayakumar J, Selvarathinam T, Amirtharaj K, Deenathayalan R. Bio-prospecting of marine-derived fungi with special reference to production of keratinase enzyme-A need-based optimization study. J App Biol Biotechnol. 2018; 6(3): 35-41. doi.org/10.7324/JABB.2018.60306.
» https://doi.org/10.7324/JABB.2018.60306
Sang XY, Wang ZJ, Yang Y, Wang YL, Xiang ML, Zhu DY, et al. Antimicrobial Natural Products Produced by Soil-Derived Fungus Penicillium cremeogriseum W1-1. Indian J Microbiol. 2021; 61: 519-23. doi.org/10.1007/s12088-021-00957-z.
» https://doi.org/10.1007/s12088-021-00957-z
Sanguiñedo P, Fratila RM, Estevez MB, Fuente JM, Grazú V, Alborés S. Extracellular biosynthesis of silver nanoparticles using fungi and their antibacterial activity. Nano Biomed Eng. 2018; 10: 165-73.
Saxena J, Sharma PK, Sharma MM, Singh A. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. Springerplus. 2016; 5.
Shore CK, Coukell A. Roadmap for antibiotic discovery. Nature microbiology. 2016; 1(6): 1-2.
Sibero MT, Diponegoro U, Zhou T. Antibacterial activity of semi purified extract of marine-derived Trichoderma reesei PDSP 5.7 using bioguided fractionation method antibacterial activity of semi purified extract of marine-derived Trichoderma reesei PDSP. Bul Oseanografi Mar. 2020; 9: 45-54. doi.org/10.14710/buloma.v9i1.29192.
» https://doi.org/10.14710/buloma.v9i1.29192
Silber J, Kramer A, Labes A, Tasdemir D. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics. Mar Drugs. 2016; 14: 137.
Smith HA. Production of antimicrobials and antioxidants from filamentous fungi. Doctoral dissertation, National University of Ireland Maynooth; 2014.
Singh A, Shahid M, Singh GP, Khan HM. Mobile Genetic Elements. In Beta-Lactam Resistance in Gram-Negative Bacteria: Threats and Challenges. Singapore: Springer Nature Singapore. 2022; 141-152.
Takahashi JA, Lucas EMF. Ocorrência e diversidade estrutural de metabólitos fúngicos com atividade antibiótica. Quim Nova. 2008; 31: 1807-13.
Vera J, Gutierrez MH, Palfner G, Pantoja S. Diversity of culturable filamentous Ascomycetes in the eastern South Pacific Ocean off Chile. World J Microbiol Biotechnol. 2017; 33: 1-13.
Verma T, Aggarwal A, Singh S, Sharma S, Sarma SJ. Current challenges and advancements towards discovery and resistance of antibiotics. J Mol Struct. 2022; 1248: 131-380.
World Health Organization. WHO. New report calls for urgent action to avert antimicrobial resistance crisis; 2019. Avaiable from: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis
Wijayawardene N. Notes for genera: Ascomycota. Fungal Divers. 2017; 86: 1-594.
Yang B, He Y, Lin S, Zhang J, Li H, Wang J, et al. Antimicrobial Dolabellanes and Atranones from a Marine-Derived Strain of the Toxigenic Fungus Stachybotrys chartarum. J Nat Prod. 2019; 82: 1923-1929.
Yao G, Chen X, Zheng H, Liao D, Yu Z, Wang Z, et al. Genomic and Chemical Investigation of Bioactive Secondary Metabolites From a Marine-Derived Fungus Penicillium steckii P2648. Front Microbiol. 2021; 12. doi.org/10.3389/fmicb.2021.600991.
» https://doi.org/10.3389/fmicb.2021.600991
Youssef FS, Ashour ML, Singab ANB, Wink M. A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar Drugs. 2019; 17: 559.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Brazilian Journal of Pharmaceutical Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.
Como Citar
Dados de financiamento
-
Fundação de Amparo à Pesquisa do Estado do Amazonas
Números do Financiamento FAPEAM-010/2021 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico