Unraveling cerebroprotective potential of fenchone
A combined in vivo and in silico exploration of nitric oxide synthase modulation
DOI:
https://doi.org/10.1590/Keywords:
Fenchone, Nitric oxide synthase, BCCAO/R, Cerebroprotective, In silico studiesAbstract
In this study, we investigated the cerebroprotective effects of fenchone (FEN) against brain ischemia through in silico and in vivo approaches, focusing on the inhibition of nitric oxide synthase (NOS) and the modulation of oxidative stress markers. Molecular docking revealed the potential binding affinity of FEN for the NOS active site, with a binding energy of -6.6 kcal/mol. This was validated through molecular dynamics simulations over a 100 ns time frame, demonstrating stability and favorable interaction profiles. Wistar albino rats underwent bilateral common carotid artery occlusion/reperfusion (BCCAO/R) followed by FEN administration at doses of 100 and 200 mg/kg. Our results indicated a significant reduction in cerebral infarction size and improvements in electroencephalography (EEG) signal magnitude with FEN treatment. Additionally, FEN restored the activity of antioxidant enzymes (catalase and superoxide dismutase) and decreased malondialdehyde (MDA) and nitric oxide (NO) levels and infarct size compared to those in untreated ischemic rats. Histological analysis further corroborated the neuroprotective effects of FEN, demonstrating the structural preservation of neurons in the hippocampal CA1 region. Overall, the results suggest that FEN plays a neuroprotective role in brain ischemia, potentially through the inhibition of NOS, reduction of oxidative stress, and modulation of antioxidants, highlighting the potential of FEN as a therapeutic candidate for ischemic stroke management.
Downloads
References
Abdel-Baki AaS, Aboelhadid SM, Sokmen A, Al-Quraishy S, Hassan AO, Kamel AA. Larvicidal and pupicidal activities of foeniculum vulgare essential oil, trans-anethole and fenchone against house fly musca domestica and their inhibitory effect on acetylcholinestrase. Entomol Res. 2021;51(11):568-577.
Ahmad W, Ansari MA, Yusuf M, Amir M, Wahab S, Alam P, et al. Antibacterial, anticandidal, and antibiofilm potential of fenchone: In vitro, molecular docking and in silico/admet study. Plants (Basel). 2022;11(18). doi:10.3390/plants11182395.
» https://doi.org/10.3390/plants11182395
Araruna MEC, Junior EBA, Serafim CaL, Pessoa MMB, Pessoa MLS, Alves VP, et al. (-)-fenchone prevents cysteamine-induced duodenal ulcers and accelerates healing promoting re-epithelialization of gastric ulcers in rats via antioxidant and immunomodulatory mechanisms. Pharmaceuticals (Basel). 2024;17(5). doi:10.3390/ ph17050641.
» https://doi.org/10.3390/ ph17050641
Bashir A, Mushtaq MN, Younis W, Anjum I. Fenchone, a monoterpene: Toxicity and diuretic profiling in rats. Front Pharmacol. 2023;141119360. doi:10.3389/ fphar.2023.1119360.
» https://doi.org/10.3389/ fphar.2023.1119360
Bharadwaj S, Dubey A, Yadava U, Mishra SK, Kang SG, Dwivedi VD. Exploration of natural compounds with anti-sars-cov-2 activity via inhibition of sars-cov-2 mpro. Brief Bioinform. 2021;22(2):1361-1377. doi:10.1093/ bib/bbaa382.
» https://doi.org/10.1093/ bib/bbaa382
Çinar I, Aksoy İ, Güler G, editors. Spectroscopic and computational molecular docking studies on the protein-drug interactions. 2020 Medical Technologies Congress (TIPTEKNO); 2020 19-20 Nov. 2020.
Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999;22(9):391-397. doi:10.1016/s0166-2236(99)01401-0.
» https://doi.org/10.1016/s0166-2236(99)01401-0
Dobrikov GM, Valcheva V, Nikolova Y, Ugrinova I, Pasheva E, Dimitrov V. Enantiopure antituberculosis candidates synthesized from (-)-fenchone. Eur J Med Chem. 2014;77243-247. doi:10.1016/j.ejmech.2014.03.025.
» https://doi.org/10.1016/j.ejmech.2014.03.025
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-77. doi:10.1016/0003-9861(59)90090-6.
» https://doi.org/10.1016/0003-9861(59)90090-6
Fang C, Xu H, Yuan L, Zhu Z, Wang X, Liu Y, et al. Natural compounds for sirt1-mediated oxidative stress and neuroinflammation in stroke: A potential therapeutic target in the future. Oxid Med Cell Longev. 2022;20221949718. doi:10.1155/2022/1949718.
» https://doi.org/10.1155/2022/1949718
Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World stroke organization (wso): Global stroke fact sheet 2022. Int J Stroke. 2022;17(1):18-29. doi:10.1177/17474930211065917.
» https://doi.org/10.1177/17474930211065917
Grisham MB, Johnson GG, Lancaster JR, Jr. Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol. 1996;268237-246. doi:10.1016/s0076-6879(96)68026-4.
» https://doi.org/10.1016/s0076-6879(96)68026-4
Guntupalli C, Ponugoti M, Prasanth D, Malothu N. Cerebroprotective effects of khellin: Validation through computational studies in a bilateral common carotid artery occlusion/reperfusion (bccao/r) model. Mol Simul. 2024;1-10.
Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline. 2008;3363-369.
Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557-565. doi:10.1002/ana.410360404.
» https://doi.org/10.1002/ana.410360404
Huey R, Morris GM, Forli S. Using autodock 4 and autodock vina with autodocktools: A tutorial. The Scripps Research Institute Molecular Graphics Laboratory. 2012;10550(92037): 1000.
Ilić DP, Stanojević LP, Troter DZ, Stanojević JS, Danilović BR, Nikolić VD, et al. Improvement of the yield and antimicrobial activity of fennel (foeniculum vulgare mill.) essential oil by fruit milling. Ind Crops Prod. 2019;142111854.
Imoisili OE. Prevalence of stroke-behavioral risk factor surveillance system, united states, 2011-2022. MMWR Morb Mortal Wkly Rep. 2024;73.
Jones SP, Baqai K, Clegg A, Georgiou R, Harris C, Holland EJ, et al. Stroke in india: A systematic review of the incidence, prevalence, and case fatality. Int J Stroke . 2022;17(2):132-140. doi:10.1177/17474930211027834.
» https://doi.org/10.1177/17474930211027834
Keskin I, Gunal Y, Ayla S, Kolbasi B, Sakul A, Kilic U, et al. Effects of foeniculum vulgare essential oil compounds, fenchone and limonene, on experimental wound healing. Biotech Histochem. 2017;92(4):274-282. doi:10.1080/1 0520295.2017.1306882.
» https://doi.org/10.1080/1 0520295.2017.1306882
Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399-415. doi:10.1038/nrn1106.
» https://doi.org/10.1038/nrn1106
Lovett JK, Dennis MS, Sandercock PA, Bamford J, Warlow CP, Rothwell PM. Very early risk of stroke after a first transient ischemic attack. Stroke. 2003;34(8):e138-140. doi:10.1161/01.STR.0000080935.01264.91.
» https://doi.org/10.1161/01.STR.0000080935.01264.91
Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469-474. doi:10.1111/j.1432-1033.1974. tb03714.x.
» https://doi.org/10.1111/j.1432-1033.1974. tb03714.x
Martin RL, Lloyd HG, Cowan AI. The early events of oxygen and glucose deprivation: Setting the scene for neuronal death? Trends Neurosci . 1994;17(6):251-257. doi:10.1016/0166-2236(94)90008-6.
» https://doi.org/10.1016/0166-2236(94)90008-6
Moeini R, Memariani Z, Asadi F, Bozorgi M, Gorji N. Pistacia genus as a potential source of neuroprotective natural products. Planta Med. 2019;85(17):1326-1350. doi:10.1055/a-1014-1075.
» https://doi.org/10.1055/a-1014-1075
Moustafa RR, Baron JC. Pathophysiology of ischaemic stroke: Insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol. 2008;153(Suppl 1):S44-54. doi:10.1038/sj.bjp.0707530.
» https://doi.org/10.1038/sj.bjp.0707530
Nagahiro S, Uno M, Sato K, Goto S, Morioka M, Ushio Y. Pathophysiology and treatment of cerebral ischemia. J Med Invest. 1998;45(1):57-70. doi:NA.
Nawaz S, Irfan HM, Alamgeer, Arshad L, Jahan S. Attenuation of cfa-induced chronic inflammation by a bicyclic monoterpene fenchone targeting inducible nitric oxide, prostaglandins, c-reactive protein and urea. Inflammopharmacology. 2023;31(5):2479-2491. doi:10.1007/s10787-023-01333-7.
» https://doi.org/10.1007/s10787-023-01333-7
O’boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminform. 2011;333. doi:10.1186/1758-2946-3-33.
» https://doi.org/10.1186/1758-2946-3-33
Oliveira A, Almeida J, Freitas R, Nascimento V, Aguiar L, Júnior H, et al. Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cell Mol Neurobiol. 2007;27395-406.
Opo F, Rahman MM, Ahammad F, Ahmed I, Bhuiyan MA, Asiri AM. Structure based pharmacophore modeling, virtual screening, molecular docking and admet approaches for identification of natural anti-cancer agents targeting xiap protein. Sci Rep. 2021;11(1):4049. doi:10.1038/ s41598-021-83626-x.
» https://doi.org/10.1038/ s41598-021-83626-x
Pasala PK, Abbas Shaik R, Rudrapal M, Khan J, Alaidarous MA, Jagdish Khairnar S, et al. Cerebroprotective effect of aloe emodin: In silico and in vivo studies.Saudi J Biol Sci. 2022;29(2):998-1005. doi:10.1016/j.sjbs.2021.09.077.
» https://doi.org/10.1016/j.sjbs.2021.09.077
Pasala PK, Donakonda M, Dintakurthi PSNBK, Rudrapal M, Gouru SA, Ruksana K. Investigation of cardioprotective activity of silybin: Network pharmacology, molecular docking, and in vivo studies. ChemistrySelect. 2023;8(20):e202300148. doi:10.1002/slct.202300148.
» https://doi.org/10.1002/slct.202300148
Pessoa MLS, Silva LMO, Araruna MEC, Serafim CaL, Junior EBA, Silva AO, et al. Antifungal activity and antidiarrheal activity via antimotility mechanisms of (-)-fenchone in experimental models. World J Gastroenterol. 2020;26(43):6795-6809. doi:10.3748/ wjg.v26.i43.6795.
» https://doi.org/10.3748/ wjg.v26.i43.6795
Prust ML, Forman R, Ovbiagele B. Addressing disparities in the global epidemiology of stroke. Nat Rev Neurol. 2024;20(4):207-221. doi:10.1038/s41582-023-00921-z.
» https://doi.org/10.1038/s41582-023-00921-z
Rahman MO, Ahmed SS. Anti-angiogenic potential of bioactive phytochemicals from helicteres isora targeting vegfr-2 to fight cancer through molecular docking and molecular dynamics simulation. J Biomol Struct Dyn. 2023;41(15):7447-7462.
Rehman NU, Ansari MN, Samad A, Ahmad W. In silico and ex vivo studies on the spasmolytic activities of fenchone using isolated guinea pig trachea. Molecules. 2022;27(4):1360. doi:10.3390/molecules27041360.
» https://doi.org/10.3390/molecules27041360
Rolim TL, Meireles DRP, Batista TM, De Sousa TKG, Mangueira VM, De Abrantes RA, et al. Toxicity and antitumor potential of mesosphaerum sidifolium (lamiaceae) oil and fenchone, its major component. BMC Complementary Altern Med. 2017;17(1):1-12.
Salunkhe M, Haldar P, Bhatia R, Prasad D, Gupta S, Srivastava MVP, et al. Impetus stroke: Assessment of hospital infrastructure and workflow for implementation of uniform stroke care pathway in india. Int J Stroke . 2024;19(1):76-83. doi:10.1177/17474930231189395.
» https://doi.org/10.1177/17474930231189395
Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for ischaemic stroke: Translation from the bench to the bedside. Int J Stroke . 2012;7(5):407-418. doi:10.1111/j.1747-4949.2012.00770.x.
» https://doi.org/10.1111/j.1747-4949.2012.00770.x
Trott O, Olson AJ. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi:10.1002/jcc.21334.
» https://doi.org/10.1002/jcc.21334
Vamshi G, D SNBKP, Sampath A, Dammalli M, Kumar P, B SG, et al. Possible cerebroprotective effect of citronellal: Molecular docking, md simulation and in vivo investigations. J Biomol Struct Dyn . 2024;42(3):1208-1219. doi:10.1080/07391102.2023.2220025.
» https://doi.org/10.1080/07391102.2023.2220025
Wang Z, Pan H, Sun H, Kang Y, Liu H, Cao D, et al. Fastdrh: A webserver to predict and analyze protein-ligand complexes based on molecular docking and mm/pb (gb) sa computation. Briefings Bioinf. 2022;23(5):bbac201.
Weston-Green K, Clunas H, Jimenez Naranjo C. A review of the potential use of pinene and linalool as terpene-based medicines for brain health: Discovering novel therapeutics in the flavours and fragrances of cannabis. Front Psychiatry. 2021;12583211. doi:10.3389/ fpsyt.2021.583211.
» https://doi.org/10.3389/ fpsyt.2021.583211
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, et al. Neuroprotective effect for cerebral ischemia by natural products: A review. Front Pharmacol . 2021;12607412. doi:10.3389/ fphar.2021.607412.
» https://doi.org/10.3389/ fphar.2021.607412
Xu L, Gao Y, Hu M, Dong Y, Xu J, Zhang J, et al. Edaravone dexborneol protects cerebral ischemia reperfusion injury through activating nrf2/ho-1 signaling pathway in mice. Fundam Clin Pharmacol. 2022;36(5):790-800. doi:10.1111/fcp.12782.
» https://doi.org/10.1111/fcp.12782
Yung HW, Wyttenbach A, Tolkovsky AM. Aggravation of necrotic death of glucose-deprived cells by the mek1 inhibitors u0126 and pd184161 through depletion of atp. Biochem Pharmacol. 2004;68(2):351-360. doi:10.1016/j. bcp.2004.03.030.
» https://doi.org/10.1016/j. bcp.2004.03.030
Zhang L, Lu H, Yang C. Global, regional, and national burden of stroke from 1990 to 2019: A temporal trend analysis based on the global burden of disease study 2019. Int J Stroke . 2024;0(0):17474930241246955. doi:10.1177/17474930241246955.
» https://doi.org/10.1177/17474930241246955
Ziegler U, Groscurth P. Morphological features of cell death. News Physiol Sci. 2004;19(3):124-128. doi:10.1152/nips.01519.2004.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Brazilian Journal of Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.