Machine learning based QSAR and Molecular Dynamics simulations in the structural design and mechanism of action of imidazole derivatives with anti-melanoma activityAuthorshipSCIMAGO INSTITUTIONS RANKINGS
DOI:
https://doi.org/10.1590/Keywords:
Imidazole derivatives, Anti-melanoma activity, Bio-inspired algorithms, Random Forest, Molecular Dynamics, QSARAbstract
Cancer is defined as a group of diseases in which abnormal cells multiply and can invade other organs, requiring continuous studies for new drugs. A series of 177 imidazo[1,2-a]pyridine and imidazo[1,2-a] pyrazine synthetic derivatives were previously obtained, and their anti-melanoma IC50 values have been determined. Here, Artificial Intelligence algorithms were used to select molecular descriptors and build a QSAR model, highlighting structural characteristics related to enhanced molecular potency. Additionally, the imidazopyrazine nucleus was compared to a known inhibitor of the Aurora Kinase enzyme, an important target in cancer therapy. Thus, strategic imidazopyrazines were subjected to comparative molecular dynamics calculations, providing inferences about their possible mechanisms of action. The QSAR model allows for the design and prediction of nine new analogues with favourable predicted IC50 values. Molecular dynamics simulations and the estimated binding energies are consistent with the ranking of activities presented by representatives of the series.
Downloads
References
Abraham MJ, Murtola T, Schulz R, Páll, S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X. 2015;1-2:19-25.
ACD/Labs. ChemSketch, 2022;version 2022.1.2.
Adams RC, Rashidieh B. Can computers conceive the complexity of cancer to cure it? Using artificial intelligence technology in cancer modelling and drug discovery. Math Biosci Eng. 2020;17(6):6515-6530.
Alan J, Karla B, Nikola B. A review of feature selection methods with applications. 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 2015; 10.1109/MIPRO.2015.7160458.
» https://doi.org/10.1109/MIPRO.2015.7160458
Arnold M, Holterhues C, Hollestein LM, Coebergh JWW, Nijsten T, Pukkala E, et al. Trends in incidence and predictions of cutaneous melanoma across Europe up to 2015. J Eur Acad Dermatol Venereol. 2014;33(7):1214-1223.
Arnold M, Singh D, Laversanne M, Vignat J, Vaccarella S, Metheus F, et al. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022;158(5):495-503.
Baell JB, Holloway GA, New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719-2740.
Belanger DB, Curran PJ, Hruza A, Voigt J, Meng Z, Mandal AK, Discovery of imidazo[1,2-a]pyrazine- based Aurora kinase inhibitors. Bioorg Med Chem Lett. 2010;20(17):5170-4.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42.
Bolaji ALA, Khader AT, Al-Betar MA, Awadallah MA. University course timetabling using hybridized artificial bee colony with hill climbing optimizer. J Comput Sci. 2014;5(5):809-818.
Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. A review of feature selection methods on synthetic data. Knowl Inf Syst. 2013a;34:483-519.
Bolton EE, Chen J, Kim S, Han L, He S, Shi W, et al. PubChem3D: a new resource for scientists. J Cheminform. 2011;3(1):32.
Breiman L. Random Forests. Mach Learn. 2001;45:5-32.
Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008;3:435-444.
Brown M, Bossley KM, Mills DJ, Harris CJ. High dimensional neurofuzzy systems: overcoming the curse of dimensionality” Proceedings of 1995 IEEE International Conference on Fuzzy Systems. 1995;10.1109/ FUZZY.1995.409976.
» https://doi.org/10.1109/ FUZZY.1995.409976
Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez- Fernández N, Cedrón F, Novoa FJ, Carballal A, et al. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J. 2021;12(19):4538- 4558.
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol Sci. 2019;40(8):592-604.
Cheung CHA, Coumar MS, Hsieh HP, Chang JY, Coumar MS, Cheung CH, et al. Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin Investig Drugs. 2009;18(4):379-98.
Congreve M, Carr R, Murray C, Jhoti H. A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today. 2003;8(19):876-7.
Cramer SF. The origin of epidermal melanocytes. Implications for the histogenesis of nevi and melanomas. Arch Pathol Lab Med. 1991;115:115-119
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Darden T, York D, Pedersen L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089-10092.
Du R, Huang C, Liu K, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer. 2021;20(1):15.
Egan WJ, Merz KM, Baldwin JJ. Prediction of Drug Absorption Using Multivariate Statistics. J Med Chem . 2000;43:3867-3877.
Erdmann F, Lortet-Tieulent J, Schüz J, Zeeb H, Greinert R, Breitbart EW, et al. International trends in the incidence of malignant melanoma 1953-2008-are recent generations at higher or lower risk? Int J Cancer. 2013;132(2):385-400.
Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform . 2009;1:8.
Fatma S, Cagla K, Besra YO, Aycan A, Roya G, Sezgi K, et al. The Evaluation of Effect of Aurora Kinase Inhibitor CCT137690 in Melanoma and Melanoma Cancer Stem Cell. Anticancer Agents Med Chem. 2021;21(12):1564- 1574.
Garamvölgyi R, Dobos J, Sipos A, Boros S, Illyés E, Baska F, et al. Design and synthesis of new imidazo[1,2-a] pyridine and imidazo[1,2-a]pyrazine derivatives with antiproliferative activity against melanoma cells. Eur J Med Chem . 2016;108:623-643.
GCO - Global Cancer Observatory, WHO - World Health Organization. 2023. https://gco.iarc.fr Accessed 29 Jun 2023
Ghose, AK, Viswanadhan, VN, Wendoloski, JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1:55-68.
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46.
Hart PE, Nilsson NJ, Raphael, B. A formal basis for the heuristic determination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions. 1968;10.1109/TSSC.1968.300136.
» https://doi.org/10.1109/TSSC.1968.300136
Hess B, Kutzner C, Van Der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load- balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435-47.
Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim. 2007;39:459-471.
Kim S, Bolton EE, Bryant SH. PubChem3D: conformer ensemble accuracy. J Cheminform . 2013;5(1):1.
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res . 2023;51(D1):D1373-D1380.
Klanbauer G, Hochreiter S, Rarey M. Machine Learning in Drug Discovery. J Chem Inf Model. 2019; 59(3):945-946.
Kode Cheminformatics. Dragon version 7.0.10, 2017.
Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33(12):889-97.
Kumari R, Kumar R. Open-Source Drug Discovery Consortium, Lynn A. g_mmpbsa - A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf. 2014;54(7)1951-1962.
Labute P. A widely applicable set of descriptors. J Mol Graph Model. 2000;18(4-5):464-77.
Lipinski, CA, Lombardo F, Dominy, BW, Feeney, PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46: 3-26.
Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today . 2018;23(8):1538-1546.
Majumdar S, Basak SC. Beware of External Validation! - A Comparative Study of Several Validation Techniques used in QSAR Modelling. Curr Comput Aided Drug Des. 2018;14(4):284-291.
Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today . 2019;24(3):773-780.
Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, et al. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J Chem Theory Comput 2011;7(12):4026-37.
Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992; 13(8)952-962.
Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem . 2001;44;1841-1846.
Ogilvie LA, Kovachev A, Wierling C, Lange BMH, Lehrach H. Models of models: A translational route for cancer treatment and drug development. Front Oncol. 2017;19:7:219.
Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys. 1981;52:7182-7190.
Punt S, Malu S, McKenzie JA, Manrique SZ, Doorduijn EM, Mbofung RM, et al. Aurora kinase inhibition sensitizes melanoma cells to T-cell-mediated cytotoxicity. Cancer Immunol Immunother. 2021;70(4):1101-1113.
Rebecca VW, Somasundaram R, Herlyn, M. Pre-clinical modeling of cutaneous melanoma. Nat Commun. 2020;11(1):2858.
Sellwood MA, Ahmed M, Segler MHS, Brown N. Artificial intelligence in drug discovery. Future Med Chem. 2018;10(17)2025-2028.
Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med. 2021;137:104851.
Silva SB, Pinheiro MP, Fuzo CA, Silva SR, Ferreira TL, Lourenzoni MR, et al. The role of local residue environmental changes in thermostable mutants of the GH11 xylanase from Bacillus subtilis. Int J Biol Macromol. 2017;97:574-584.
Talevi A, Morales JF, Hather G, Podichetty JT, Kim S, Bloomingdale PC, et al. Machine Learning in Drug Discovery and Development Part 1: A Primer. CPT Pharmacometrics Syst Pharmacol. 2020;9(3):129-142.
Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano, Y. Cancer Res. 1999;59:2041-2044.
Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. Wiley Online Library. 2009;10.1002/9783527628766.
» https://doi.org/10.1002/9783527628766
Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Disco. 2019;18(6):463-477.
Van Gunsteren WF, Berendsen HJC. A leap-frog algorithm for stochastic dynamics. Mol. Simul. 1988;1(3):173-185.
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem . 2002;45:2615-2623.
WHO - World Health Organization, Cancer. 2022 2022 https://www.who.int/news-room/fact-sheets/detail/cancer Accessed 30 Jun 2023.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Brazilian Journal of Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.