Physiologically-based pharmacokinetic modeling of enantioselective hydroxychloroquine kinetics and impact of genetic polymorphisms

Autores

  • Gabriella de Souza Gomes Ribeiro São Paulo State University, Araraquara, Brazil https://orcid.org/0000-0001-5690-2685
  • Leandro Francisco Pippa Center for Pharmacometrics & Systems Pharmacology, University of Florida, USA
  • Fernanda de Lima Moreira Federal University of Rio de Janeiro, School of Pharmacy, Rio de Janeiro, Brazil
  • Natália Valadares de Moraes Center for Pharmacometrics & Systems Pharmacology, University of Florida, USA https://orcid.org/0000-0002-4389-058X

DOI:

https://doi.org/10.1590/

Palavras-chave:

Hydroxychloroquine, Enantiomers, PBPK, Gene polymorphisms , Drug interactions

Resumo

Hydroxychloroquine (HCQ) is a chiral drug used to treat malaria and inflammatory diseases, available as a racemic mixture of R-and S-HCQ. This work aimed to build physiologically-based pharmacokinetic (PBPK) models to predict the pharmacokinetics (PK) of R-and S-HCQ and assess the impact of major genetic polymorphisms on PK. Whole-body PBPK models accounting for first-order absorption, Rodgers and Rowland distribution method, and enzyme kinetics data were built for R-and S-HCQ. The models were verified by comparing predicted PK parameters with observed ones, with a mean error within the acceptable range (0.5-2 fold). Simulations covered CYP2D6 normal metabolizer (NM), poor metabolizer (PM), and ultra-rapid metabolizer (UM) phenotypes, as well as CYP2C8 NM and PM phenotypes. The results revealed a 1.1-fold increase in area under the curve blood concentration versus time (AUC) for CYP2D6 PM individuals and a 0.9-fold reduction for UM individuals compared to NM individuals. In addition, simulations with CYP2D6 and CYP2C8 PM phenotype individuals combined with the CYP3A4 inhibitor clarithromycin showed increased AUC for R-and S-HCQ of 2.34 and 2.68, respectively. These PBPK models offer reliable predictions for R-and S-HCQ enantioselective kinetics and shed light on previously unexplored scenarios.

Downloads

Referências

Aquilante CL, Niemi M, Gong L, Altman RB, Klein TE. PharmGKB summary. Pharmacogenet Genomics. 2013;23(12):721-728.

Brocks DR, Mehvar R. Stereoselectivity in the pharmacodynamics and pharmacokinetics of the chiral antimalarial drugs. Clin Pharmacokinet. 2003;42:1359-1382.

Brocks DR, Skeith KJ, Johnston C, Emamibafrani J, Davis P, Russell AS, et al. Hematologic disposition of hydroxychloroquine enantiomers. J Clin Pharmacol. 1994;34(11):1088-1097.

Cardoso CD, Bonato PS. Enantioselective metabolism of hydroxychloroquine employing rats and mice hepatic microsomes. Rev Bras Cienc Farm. 2009;45:658-667.

CDER. Clinical Drug Interaction Studies - Cytochrome P450 Enzyme-and Transporter-Mediated Drug Interactions Guidance for Industry. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. January 2020.

Derendorf H. Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin. Int J Antimicrob Agents. 2020;55(6):106007.

Ducharme J, Fieger H, Ducharme MP, Khalil SK, Wainer IW. Enantioselective disposition of hydroxychloroquine after a single oral dose of the racemate to healthy subjects. Br J Clin Pharmacol . 1995;40:127-133.

Hughes E, Wallender E, Mohamed A, Jagannathan P, Savic RM (2021). Malaria PK/PD and the role pharmacometrics can play in the global health arena: malaria treatment regimens for vulnerable populations. Clin Pharmacol Ther. 2021;110(4):926-940.

Jordan P, Brookes JG, Nikolic G, Le Couteur DG. Hydroxychloroquine overdose: toxicokinetics and management. J Toxicol Clin Toxicol. 1999;37(7):861-864.

Kemmenoe AV. An infant fatality due to hydroxychloroquine poisoning. J Anal Toxicol. 1990;14(3):186-188.

Lee JY, Vinayagamoorthy N, Han K, Kwok SK, Ju JH, Park KS, et al. Association of Polymorphisms of Cytochrome P450 2D6 With Blood Hydroxychloroquine Levels in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol. 2015;68(1):184-190.

LLerena A, Naranjo ME, Rodrigues-Soares F, Penas-LLedó EM, Fariñas H, Tarazona-Santos E. Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Metab Toxicol. 2014;10(11):1569-1583.

Li DQ, Kim R, McArthur E, Fleet JL, Bailey DG, Juurlink D, et al. Risk of adverse events among older adults after co-prescription of clarithromycin and statins not metabolized by cytochrome P450 3A4. Cmaj. 2015;187(3):174-180.

MacIntyre AC, Cutler DJ. The potential role of lysosomes in tissue distribution of weak bases. Biopharm Drug Dispos. 1988;9(6):513-526.

McLachlan AJ, Cutler DJ, Tett SE. Plasma protein binding of the enantiomers of hydroxychloroquine and metabolites.Eur J Clin Pharmacol . 1993;44(5):481-484.

McLachlan AJ, Tett SE, Cutler DJ, Day. Disposition and absorption of hydroxychloroquine enantiomers following a single dose of the racemate. Chirality. 1994;6:360-364.

Madabushi R, Seo P, Zhao L, Tegenge M, Zhu H. Role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making. Pharm Res. 2022;39(8):1669-1680.

Midha KK, Hubbard JW, Rawson MJ, McKay G, Schwede R. The roles of stereochemistry and partial areas in a parallel design study to assess the bioequivalence of two formulations of hydroxychloroquine: a drug with a very long half-life. Eur J Pharm Sci. 1996;4(5):283-292.

Miller D, Fiechtner J. Hydroxychloroquine overdosage. J Rheumatol. 1989;16(1):142-143.

Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR, Caldwell J, et al. Hydroxychloroquine concentration- response relationships in patients with rheumatoid arthritis. Arthritis Rheum. 2002;46(6):1460-1469.

Rodriguez-Antona C, Niemi M, Backman JT, Kajosaari LI, Neuvonen PJ, Robledo M, et al. Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. The pharmacogenomics journal. 2008; 8(4): 268-277.

Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69(1):20-28.

Tanaka E, Taniguchi A, Urano W, Yamanaka H, Kamatani N. Pharmacogenetics of disease-modifying anti-rheumatic drugs. Best Pract Res Clin R. 2004;18(2):233-247.

Tett SE, Cutler DJ, Beck C, Day RO. Concentration-effect relationship of hydroxychloroquine in patients with rheumatoid arthritis: a prospective, dose-ranging study. J Rheumatol . 2000;27(7):1656-1660.

Tett SE, McLachlan AJ, Cutler DJ, Day ROT. Pharmacokinetics and pharmacodynamics of hydroxychloroquine enantiomers in patients with rheumatoid arthritis receiving multiple doses of racemate. Chirality. 1994;(6):355-359.

Tornio A, Niemi M, Neuvonen PJ, Backman JT. Trimethoprim and the CYP2C8* 3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metabolism and Disposition. 2008;36(1):73-80.

Toutain PL, Bousquet-Mélou A. Plasma clearance. J Vet Pharmacol Ther. 2004;27(6):415-425.

Zahr N, Urien S, Llopis B, Pourcher V, Paccoud O, Bleibtreu A, et al. Pharmacokinetics and pharmacodynamics of hydroxychloroquine in hospitalized patients with COVID-19. Therapies. 2021;76(4):285-295.

Zhang M, Yao X, Hou Z, Guo X, Tu S, Lei Z, et al. Development of a physiologically based pharmacokinetic model for hydroxychloroquine and its application in dose optimization in specific COVID-19 patients. Front Pharmacol. 2021;11:585021.

Downloads

Publicado

2025-02-11

Edição

Seção

Article

Como Citar

Physiologically-based pharmacokinetic modeling of enantioselective hydroxychloroquine kinetics and impact of genetic polymorphisms. (2025). Brazilian Journal of Pharmaceutical Sciences, 61. https://doi.org/10.1590/