Revolutionizing Medicine
Unleashing the Power of Real-World Data and AI in Advancing Clinical Trials
DOI:
https://doi.org/10.1590/Keywords:
Clinical trial, Real-world data, Artificial intelligence, Biopharmaceutical industries, Developments, HealthcareAbstract
In the biopharmaceutical industry, the conventional “linear and sequential” clinical trial approach is still the norm; however, it is frequently beset by issues with patient selection, retention, and monitoring that are not up to par, leading to longer trial durations and higher trial failure rates. Artificial intelligence (AI) has the potential to reduce the duration of clinical trials significantly, expedite protocol design and study implementation, improve trial outcomes, and lower the cost of biopharmaceutical R&D. AI may also speed up clinical cycle times. Clinical trial mining, design and execution, and real-world experience analysis are all possible using AI. Major drug makers are utilizing AI to locate volunteers for clinical trials or to cut down on the number of subjects required for drug testing, which might speed up medication development and save millions of dollars. The clinical trial procedure may be enhanced by AI, but evidentiary requirements for a drug’s efficacy and safety won’t alter, according to regulators. This article discusses the application of AI, RWD, and RWE in clinical trials and how it is transforming the biopharma value chain, encompassing all pharmaceutical firms referred to as “biopharma companies” due to the inclusion of biologics in their development pipelines and within these biopharma firms, artificial intelligence (AI) is finding its way into drug research.
Downloads
References
Aerts A, Bogdan-Martin D. Leveraging data and AI to deliver on the promise of digital health. Int J Med Inform. 2021;150(104456):104456.
Amin P, Nam S, Perez L, Smith J. Integrated evidence generation: A paradigm shift in biopharma. Mckinsey.com. McKinsey & Company; 2021. https://www.mckinsey.com/industries/life-sciences/our-insights/integrated-evidence-generation-a-paradigm-shift-in-biopharma .
Anaya-Isaza A, Mera-Jimenez L, Zequera-Diaz M. An overview of deep learning in medical imaging. Inform Med Unlocked. 2021;26(100723):100723. http://dx.doi.org/10.1016/j.imu.2021.100723 .
» https://doi.org/10.1016/j.imu.2021.100723.
Apple. Apple announces three ground breaking health studies [Internet]. Apple. 2019 [cited 2023 Nov 30]. Available from: https://www.apple.com/in/newsroom/2019/09/apple-announces-three-groundbreaking-health-studies/
» https://www.apple.com/in/newsroom/2019/09/apple-announces-three-groundbreaking-health-studies/
Askin S, Burkhalter D, Calado G, El Dakrouni S. Artificial Intelligence Applied to clinical trials: opportunities and challenges. Health Technol (Berl). 2023;13(2):203–13. http://dx.doi.org/10.1007/s12553-023-00738-2 .
» https://doi.org/10.1007/s12553-023-00738-2.
Askr H, Elgeldawi E, Aboul Ella H, Elshaier YAMM, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev. 2023;56(7):5975–6037. http://dx.doi.org/10.1007/s10462-022-10306-1 .
» https://doi.org/10.1007/s10462-022-10306-1.
Aung YYM, Wong DCS, Ting DSW. The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare. Br Med Bull. 2021;139(1):4–15. http://dx.doi.org/10.1093/bmb/ldab016 .
» https://doi.org/10.1093/bmb/ldab016.
Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021 Jul;8(2):e188-e194. doi: 10.7861/fhj.2021-0095.
» https://doi.org/10.7861/fhj.2021-0095.
Banda JM, Seneviratne M, Hernandez-Boussard T, Shah NH. Advances in Electronic Phenotyping: From Rule-Based Definitions to Machine Learning Models. Annu Rev Biomed Data Sci. 2018 Jul;1:53-68. doi: 10.1146/annurev-biodatasci-080917-013315.
» https://doi.org/10.1146/annurev-biodatasci-080917-013315.
Bhatt A. Conducting real-world evidence studies in India. Perspect Clin Res. 2019 Apr-Jun;10(2):51-56. doi: 10.4103/picr.PICR_8_19. PMID: 31008069; PMCID: PMC6463503.
» https://doi.org/10.4103/picr.PICR_8_19.
BioSpace. Artificial Intelligence (AI) in Life Sciences Market Projected to Soar USD 9,800 Million by 2032. 2023. https://www.biospace.com/article/releases/artificial-intelligence-ai-in-life-sciences-market-projected-to-soar-usd-9-800-million-by-2032/ .
Bogin V. Master protocols: New directions in drug discovery. Contemp Clin Trials Commun. 2020;18(100568):100568. http://dx.doi.org/10.1016/j.conctc.2020.100568 .
» https://doi.org/10.1016/j.conctc.2020.100568.
Briel M, Elger BS, McLennan S, Schandelmaier S, von Elm E, Satalkar P. Exploring reasons for recruitment failure in clinical trials: a qualitative study with clinical trial stakeholders in Switzerland, Germany, and Canada. Trials. 2021;22(1). http://dx.doi.org/10.1186/s13063-021-05818-0 .
» https://doi.org/10.1186/s13063-021-05818-0.
Canada.ca. [cited 2023 Sep 9]. Available from: https://www.canada.ca/en/health-canada/corporate/about-health-canada/activities-responsibilities/strategies-initiatives/health-products-food-regulatory-modernization/clinical-trial-regulations.html
Cascini F, Beccia F, Causio FA, Melnyk A, Zaino A, Ricciardi W. Scoping review of the current landscape of AI-based applications in clinical trials. Front Public Health. 2022 Aug 12;10:949377. doi: 10.3389/fpubh.2022.949377.
» https://doi.org/10.3389/fpubh.2022.949377.
Chaudhari N, Ravi R, Gogtay NJ, Thatte UM. Recruitment and retention of the participants in clinical trials: Challenges and solutions. Perspect Clin Res. 2020 Apr-Jun;11(2):64-69. doi: 10.4103/picr.PICR_206_19.
» https://doi.org/10.4103/picr.PICR_206_19.
Chopra H, Annu, Shin DK, Munjal K, Priyanka, Dhama K et al., Revolutionizing clinical trials: the role of AI in accelerating medical breakthroughs. Int J Surg. 2023 Dec 1;109(12):4211-4220. doi: 10.1097/JS9.0000000000000705.
» https://doi.org/10.1097/JS9.0000000000000705.
Ciolino JD, Kaizer AM, Bonner LB. Guidance on interim analysis methods in clinical trials. J Clin Transl Sci. 2023;7(1). http://dx.doi.org/10.1017/cts.2023.552 .
» https://doi.org/10.1017/cts.2023.552.
Clark LT, Watkins L, Pina IL, Elmer M, Akinboboye O, Gorham M, et al. Increasing diversity in clinical trials: Overcoming critical barriers. Curr Probl Cardiol. 2019;44(5):148–72. http://dx.doi.org/10.1016/j.cpcardiol.2018.11.002 .
» https://doi.org/10.1016/j.cpcardiol.2018.11.002.
DeHaas D, Main A. The board’s role in shaping digital transformation. Deloitte Insights, January 2018. https://www2.deloitte.com/us/en/pages/center-for-boardeffectiveness/articles/shaping-digital-disruption.html .
Deng L, Hsu C-Y, Shyr Y. Power and sample sizes estimation in clinical trials with treatment switching in intention-to-treat analysis: a simulation study. BMC Med Res Methodol. 2023;23(1). http://dx.doi.org/10.1186/s12874-023-01864-1 .
» https://doi.org/10.1186/s12874-023-01864-1.
Dhudum R, Ganeshpurkar A, Pawar A. Revolutionizing drug discovery: A comprehensive review of AI applications. Drugs and Drug Candidates. 2024;3(1):148–71. http://dx.doi.org/10.3390/ddc3010009 .
» https://doi.org/10.3390/ddc3010009.
Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov. 2019;18(7):495–6. http://dx.doi.org/10.1038/d41573-019-00074-z .
» https://doi.org/10.1038/d41573-019-00074-z.
EUR-Lex. Document 32014R0536. Regulation (EU) No 536/2014. EUR-Lex – 32014R0536 – EN – EUR-Lex (europa.eu). Accessed 5 January 2022.
» europa.eu
European Medicines Agency. Human Regulatory: Research and Development: Clinical Trials Information System: training and support. Clinical Trials Information System: training and support | European Medicines Agency (europa.eu). Accessed 5 January 2022.
» europa.eu
Field H. The first fully A.I.-generated drug enters clinical trials in human patients [Internet]. CNBC. 2023 [cited 2023 Sep 29]. https://www.cnbc.com/2023/06/29/ai-generated-drug-begins-clinical-trials-in-human-patients.html
» https://www.cnbc.com/2023/06/29/ai-generated-drug-begins-clinical-trials-in-human-patients.html
Firth JA, Hellewell J, Klepac P, Kissler S, Jit M, Atkins KE et al. Using a real-world network to model localized COVID-19 control strategies. Nat Med. 2020;26(10):1616–22. http://dx.doi.org/10.1038/s41591-020-1036-8 .
» https://doi.org/10.1038/s41591-020-1036-8.
Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp Clin Trials Commun. 2018;11:156–64. http://dx.doi.org/10.1016/j.conctc.2018.08.001 .
» https://doi.org/10.1016/j.conctc.2018.08.001.
Gangdolia N. AI in Clinical Trials market. Roots Analysis. 2023. https://www.rootsanalysis.com/reports/ai-based-clinical-trial-solutions.html .
» https://www.rootsanalysis.com/reports/ai-based-clinical-trial-solutions.html
Gangwal A, Ansari A, Ahmad I, Azad AK, Kumarasamy V, Subramaniyan V, et al. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities. Front Pharmacol. 2024;15. http://dx.doi.org/10.3389/fphar.2024.1331062 .
» https://doi.org/10.3389/fphar.2024.1331062.
Goel S, Paoli C, Iurlo A, Pereira A, Efficace F, Barbui T, et al. Socioeconomic burden of participation in clinical trials in patients with myeloproliferative neoplasms. Eur J Haematol. 2017;99(1):36–41. http://dx.doi.org/10.1111/ejh.12887
» https://doi.org/10.1111/ejh.12887
Gordon WJ, Mandl KD. The 21st Century Cures Act: A Competitive Apps Market and the Risk of Innovation Blocking. J Med Internet Res. 2020 Dec 11;22(12):e24824. doi: 10.2196/24824.
» https://doi.org/10.2196/24824.
Gross AS, Harry AC, Clifton CS, Della Pasqua O. Clinical trial diversity: An opportunity for improved insight into the determinants of variability in drug response. Br J Clin Pharmacol. 2022;88(6):2700-2717. doi: 10.1111/bcp.15242.
» https://doi.org/10.1111/bcp.15242.
Haleem A, Javaid M, Asim Qadri M, Pratap Singh R, Suman R. Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks. 2022;3:119–32. http://dx.doi.org/10.1016/j.ijin.2022.08.005 .
» https://doi.org/10.1016/j.ijin.2022.08.005.
Hardman TC, Aitchison R, Scaife R, Edwards J, Slater G. The future of clinical trials and drug development: 2050. Drugs Context. 2023 Jun 8;12:2023-2-2. doi: 10.7573/dic.2023-2-2.
» https://doi.org/10.7573/dic.2023-2-2.
Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577–91.
Ionan AC, Clark J, Travis J, Amatya A, Scott J, Smith JP et al. Bayesian Methods in Human Drug and Biological Products Development in CDER and CBER. Ther Innov Regul Sci. 2023 May;57(3):436-444. doi: 10.1007/s43441-022-00483-0.
» https://doi.org/10.1007/s43441-022-00483-0.
Kaizer AM, Belli HM, Ma Z, Nicklawsky AG, Roberts SC, Wild J, et al. Recent innovations in adaptive trial designs: A review of design opportunities in translational research. J Clin Transl Sci. 2023;7(1). http://dx.doi.org/10.1017/cts.2023.537 .
» https://doi.org/10.1017/cts.2023.537.
Kim E, Yang J, Park S, Shin K. Factors affecting success of new drug clinical trials. Ther Innov Regul Sci. 2023;57(4):737–50. Available from: http://dx.doi.org/10.1007/s43441-023-00509-1 .
» https://doi.org/10.1007/s43441-023-00509-1.
Lehne M, Sass J, Essenwanger A, Schepers J, Thun S. Why digital medicine depends on interoperability. NPJ Digit Med. 2019;2(1). Available from: http://dx.doi.org/10.1038/s41746-019-0158-1
» https://doi.org/10.1038/s41746-019-0158-1
Leyens L, Simkins T, Horst NK. The COVID-19 pandemic as a catalyst for innovation: a regulatory framework to assess fit-for-purpose innovative approaches in clinical research. Trials. 2022 Sep 30;23(1):833. doi: 10.1186/s13063-022-06707-w.
» https://doi.org/10.1186/s13063-022-06707-w.
LifeSciencesIntelligence. Embracing AI in life sciences: Opportunities for healthcare technology. LifeSciencesIntelligence. 2023. https://lifesciencesintelligence.com/features/embracing-ai-in-life-sciences-opportunities-for-healthcare-technology .
Liu F, Panagiotakos D. Real-world data: a brief review of the methods, applications, challenges and opportunities. BMC Med Res Methodol. 2022;22(1). http://dx.doi.org/10.1186/s12874-022-01768-6 .
» https://doi.org/10.1186/s12874-022-01768-6.
Liu H, Chi Y, Butler A, Sun Y, Weng C. A knowledge base of clinical trial eligibility criteria. J Biomed Inform. 2021 ;117:103771. doi: 10.1016/j.jbi.2021.103771.
» https://doi.org/10.1016/j.jbi.2021.103771.
Maresova P. Impact of Regulatory Changes on Innovations in the Medical Device Industry Comment on “Clinical Decision Support and New Regulatory Frameworks for Medical Devices: Are We Ready for It? - A Viewpoint Paper”. Int J Health Policy Manag. 2023;12:7262. doi: 10.34172/ijhpm.2022.7262.
» https://doi.org/10.34172/ijhpm.2022.7262.
Mathias EG, Dhyani VS, Krishnan JB, Rani U, Gudi N, Pattanshetty S. Community based health literacy interventions in India: A scoping review. Clin Epidemiol Glob Health. 2023;22(101310):101310. http://dx.doi.org/10.1016/j.cegh.2023.101310 .
» https://doi.org/10.1016/j.cegh.2023.101310.
Mehta D. The role of artificial intelligence in healthcare and medical negligence. Liverp Law Rev. 2024;45(1):125–42. http://dx.doi.org/10.1007/s10991-023-09340-y
» https://doi.org/10.1007/s10991-023-09340-y
Mitsi G, Grinnell T, Giordano S, Goodin T, Sanjar S, Marble E et al. Implementing Digital Technologies in Clinical Trials: Lessons Learned. Innov Clin Neurosci. 2022 Apr-Jun;19(4-6):65-69.
Morrison C. AI developers tout revolution, drugmakers talk evolution. Nat Biotechnol. 2019. https://www.nature.com/articles/d41587-019-00033-4 .
» https://www.nature.com/articles/d41587-019-00033-4
Mukherjee S, Suleman S, Pilloton R, Narang J, Rani K. State of the art in smart portable, wearable, ingestible and implantable devices for health status monitoring and disease management. Sensors (Basel).2022;22(11):4228.http://dx.doi.org/10.3390/s22114228.
» https://doi.org/10.3390/s22114228.
Mullard A. How much do phase III trials cost? Nat Rev Drug Discov. 2018;17(11):777–777. https://www.nature.com/articles/nrd.2018.198 .
» https://www.nature.com/articles/nrd.2018.198
Park JJH, Siden E, Zoratti MJ, Dron L, Harari O, Singer J, et al. Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols. Trials. 2019;20(1). http://dx.doi.org/10.1186/s13063-019-3664-1 .
» https://doi.org/10.1186/s13063-019-3664-1.
Qureshi R, Irfan M, Gondal TM, Khan S, Wu J, Hadi MU et al. AI in drug discovery and its clinical relevance. Heliyon. 2023;9(7):e17575. doi: 10.1016/j.heliyon.2023.e17575
» https://doi.org/10.1016/j.heliyon.2023.e17575
Rajapathirana RPJ, Hui Y. Relationship between innovation capability, innovation type, and firm performance. J Innov Knowl. 2018;3(1):44–55. Available from: http://dx.doi.org/10.1016/j.jik.2017.06.002 .
» https://doi.org/10.1016/j.jik.2017.06.002.
Rashid MBMA. Artificial intelligence effecting a paradigm shift in drug development. SLAS Technol. 2021;26(1):3–15. Available from: http://dx.doi.org/10.1177/2472630320956931 .
» https://doi.org/10.1177/2472630320956931.
Santos-Vijande ML, Gomez-Rico M, Molina-Collado A, Davison RM. Building user engagement to mhealth apps from a learning perspective: Relationships among functional, emotional and social drivers of user value. J Retail Consum Serv. 2022;66(102956):102956. Available from: http://dx.doi.org/10.1016/j.jretconser.2022.102956 .
» https://doi.org/10.1016/j.jretconser.2022.102956.
Shahani A, Nieva HR, Czado K, Shannon E, Gaetani R, Gresham M et al. An electronic pillbox intervention designed to improve medication safety during care transitions: challenges and lessons learned regarding implementation and evaluation. BMC Health Serv Res. 2022 Oct 30;22(1):1304. doi: 10.1186/s12913-022-08702-y.
» https://doi.org/10.1186/s12913-022-08702-y.
Singh N, Vayer P, Tanwar S, Poyet J-L, Tsaioun K, Villoutreix BO. Drug discovery and development: introduction to the general public and patient groups. Front Drug Discov (Lausanne) [Internet]. 2023;3. http://dx.doi.org/10.3389/fddsv.2023.1201419 .
» https://doi.org/10.3389/fddsv.2023.1201419.
Singh S, Thakkar R, Kakkar M, George R. Telehealth and dental specialties during COVID-19 pandemic. SRM J Res Dent Sci [Internet]. 2020;11(4):199. Available from: http://dx.doi.org/10.4103/srmjrds.srmjrds_83_20 .
» https://doi.org/10.4103/srmjrds.srmjrds_83_20.
Subbiah V. The next generation of evidence-based medicine. Nat Med. 2023;29(1):49–58. http://dx.doi.org/10.1038/s41591-022-02160-z .
» https://doi.org/10.1038/s41591-022-02160-z.
Terry M. Bristol-Myers Squibb and Concerto HealthAI sign cancer Real World Data agreement [Internet]. BioSpace. 2019 [cited 2024 Apr 1]. Available from: https://www.biospace.com/article/bristol-myers-squibb-and-concerto-healthai-ink-strategic-deal/ .
» https://www.biospace.com/article/bristol-myers-squibb-and-concerto-healthai-ink-strategic-deal/
Thorlund K, Dron L, Park JJH, Mills EJ. Synthetic and external controls in clinical trials – A primer for researchers. Clin Epidemiol. 2020;12:457–67. http://dx.doi.org/10.2147/clep.s242097 .
» https://doi.org/10.2147/clep.s242097.
Unger JM, Hershman DL, Till C, Minasian LM, Osarogiagbon RU, Fleury ME, et al. When offered to participate: A systematic review and meta-analysis of patient agreement to participate in cancer clinical trials. J Natl Cancer Inst. 2021;113(3):244–57. http://dx.doi.org/10.1093/jnci/djaa155 .
» https://doi.org/10.1093/jnci/djaa155.
Us PW. Predictive retrosynthesis. Elsevier; 2024.
Vaghela S, Tanni KA, Banerjee G, Sikirica V. A systematic review of real-world evidence (RWE) supportive of new drug and biologic license application approvals in rare diseases. Orphanet J Rare Dis. 2024;19(1):1–12. https://ojrd.biomedcentral.com/articles/10.1186/s13023-024-03111-2 .
» https://ojrd.biomedcentral.com/articles/10.1186/s13023-024-03111-2
Visiongain Reports Ltd. AI-based clinical trial solution providers market is projected to grow at a CAGR of 23.3% by 2033: Visiongain. 2023. https://www.globenewswire.com/news-release/2023/05/30/2678575/0/en/AI-based-clinical-trial-solution-providers-market-is-projected-to-grow-at-a-CAGR-of-23-3-by-2033-Visiongain.html .
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 2023 Jul 10;15(7):1916. doi: 10.3390/pharmaceutics15071916.
» https://doi.org/10.3390/pharmaceutics15071916.
Williams CP, Geiger AM, Norton WE, de Moor JS, Everson NS. Influence of cost-related considerations on clinical trial participation: Results from the 2020 health information national trends survey (HINTS). J Gen Intern Med. 2023;38(5):1200–6. http://dx.doi.org/10.1007/s11606-022-07801-0 .
» https://doi.org/10.1007/s11606-022-07801-0.
Winkfield KM, Phillips JK, Joffe S, Halpern MT, Wollins DS, Moy B. Addressing financial barriers to patient participation in clinical trials: ASCO policy statement. J Clin Oncol. 2018;36(33):3331–9. http://dx.doi.org/10.1200/jco.18.01132 .
» https://doi.org/10.1200/jco.18.01132.
Yaqub MZ, Alsabban A. Industry-4.0-enabled digital transformation: Prospects, instruments, challenges, and implications for business strategies. Sustainability [Internet]. 2023;15(11):8553. Available from: http://dx.doi.org/10.3390/su15118553 .
» https://doi.org/10.3390/su15118553.
» http://dx.doi.org/10.3390/su15118553
Zhang B, Zhang L, Chen Q, Jin Z, Liu S, Zhang S. Harnessing artificial intelligence to improve clinical trial design. Commun Med (Lond). 2023;3(1). http://dx.doi.org/10.1038/s43856-023-00425-3 .
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Pharmaceutical Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.