Botrytis cinerea

acetylcholinesterase inhibition, cytotoxicity, antimicrobial, larvicidal activity and metabolite isolated from fungal extract

Authors

  • Maislian de Oliveira Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil https://orcid.org/0000-0001-8694-5176
  • Cristiane Bezerra da Silva Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Beatriz Cristina Konopatzki Hirota Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Camila Freitas de Oliveira Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil https://orcid.org/0000-0002-8549-5182
  • Katlin Suélem Rech Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Cristiane da Silva Paula Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Josiane de Fátima Gaspari Dias Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Obdulio Gomes Miguel Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Celso Garcia Auer Brazilian Agricultural Research Corporation, Colombo, Paraná, Brazil
  • Marilis Dallarmi Miguel Post-Graduation in Pharmaceutical Sciences Program, Pharmacy Department, Federal University of Paraná, Curitiba, Paraná, Brazil

DOI:

https://doi.org/10.1590/

Keywords:

Acetylcholinesterase, Cytotoxicity, Antimicrobial, Larvicidal, Botrytis cinerea

Abstract

This study highlights the importance of fungi, specifically Botrytis cinerea Pers., in the search for bioactive compounds with therapeutic potential. Extraction approaches using Soxhlet, and maceration methods were applied of the fungus to explore secondary metabolites production. The compound mannitol was separated from the crude extract through nuclear magnetic resonance. The results indicated a positive effect on the inhibitory action of the acetylcholinesterase enzyme for ethyl acetate fractions obtained from the broth. Additionally, significant cytotoxic effects were observed in neoplastic cell lines, with IC 50 values of 3.5 μg/mL, 5.6 μg/mL, and 8.5 μg/ mL for colon cancer cells, monocytes, and human glioma, respectively. Antimicrobial activity was also evident in B. cinerea extracts and fractions, particularly in the ethyl acetate fractions from the broth. Larvicidal activity was observed in the chloroform fractions of the broth, with CL50 values of 20,824 μg/mL and 83,401 μg/mL. Furthermore, morphological changes in larvae were observed when exposed to the fungus’s extracts and fractions. The results suggest that B. cinerea extracts and fractions have the potential to identify substances with applications in biological activities, such as cytotoxic, antimicrobial, and larvicidal actions. Continued research is recommended to investigate compounds responsible for these activities and explore their potential applications.

Downloads

Download data is not yet available.

References

Alfenas AC, Mafia RG. Métodos em fitopatologia. 2007.

Arruda W, Oliveira GMC, Silva IG. Alterações morfológicas observadas em larvas de Aedes aegypti (Linnaeus, 1762) submetidas à ação do extrato bruto etanólico da casca do caule da Magonia pubenscens. Entomol Vect. 2003; 10: 47-60.

Asaduzzaman M, Uddin J, Kader MA, Alam AHMK, Rahman AA, Rashid M, et al. In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: implications for the treatment of Alzheimer’s disease . Psychogeriatrics. 2014; 14(1): 1-10.

Branco A, Santos JDG, Pimentel MMAM, Osuna JTA, Lima LS, David JM. D-mannitol from Agave sisalana biomass waste. Ind Crops Prod. 2010; 32(3).

Benkova M, Soukup O, Marek J. Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. J Appl Microbiol. 2020; 129: 806-822.

Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005; 11: 127–152.

Bücker A, Bücker NCF, Souza AQL, Gama AM, Rodrigues- Filho E, Costa FM, et al. Larvicidal effects of endophytic and basidiomycete fungus extracts on Aedes and Anopheles larvae (Diptera: Culicidae). Rev Soc Bras Med Trop. 2013; 46(4): 411-419.

Cantón E, Espinel-Ingroff A, Pemán J. Trends in antifungal susceptibility testing using CLSI reference and commercial methods. Expert Rev Anti Infect Ther. 2009; 7(1): 107-119.

Chaithong UW, Choocote K, Kamsuk A, Jitpakdi P, Tippawngkosol D, Chaivasit D, et al. Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). J Vector Ecol. 2006; 31(1): 138-144.

Cimmino A, Andolfi A, Avolio F, Ali A, Tabanca N, Khan IA, et al. Cyclopaldic acid, seiridin, and sphaeropsidin A as fungal phytotoxins, and larvicidal and biting deterrents against Aedes aegypti (Diptera: Culicidae): structure-activity relationships. Chem Biodivers. 2013; 10(7): 1239-1251.

Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (Document M07-A8). Wayne, PA, USA: CLSI. 2008a.

Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi (Approved standard Document M38-A2). Wayne, P.A.: CLSI. 2008b.

Collado IG, Aleu J, Hernández-Galán R. Botrytis species: an intriguing source of metabolites with a wide range of biological activities. Structure, chemistry and bioactivity of metabolites isolated from Botrytis species. Curr Org Chem. 2000; 4: 1261-1286.

Collado IG, Viaud M. Secondary Metabolism in Botrytis cinerea: Combining Genomic and Metabolomic Approaches. In: Botrytis – the Fungus, the Pathogen and Its Management in Agricultural Systems. 2015; 291–313.

Conte H. Morfologia do corpo gorduroso em larvas de Diatrea saccharlis (Lepidóptera: Pyralidae) não parasitadas e parasitas pelo Cotesia flavipes (Hymenoptera: Braconidae). Rio Claro: Universidade Estadual Paulista; 1994.

Cruz-Landim C, Cruz-Hofling MA. Ultrastructure of ovarian follicular epithelium of the Amazonian fish Pseudotylosurus microps (Gunther) (Teleostei, Belonidae): I. the follicular cells cycle of development. Rev Bras Zool. 2000; 18(1): 99-109.

Daoubi M, Duran-Patron R, Hernandez-Galan R, Benharref A, Hansonc JR, Collado IJ. The role of botrydienediol in the biodegradation of the sesquiterpenoid phytotoxin botrydial by Botrytis cinerea. Tetrahedron. 2006; 62(35): 8256-61.

Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986; 89(2): 271-7.

Elad Y, Filinger Y. Botrytis – the fungus, the pathogen and its management in agricultural systems. Switzerland: Springer International Publishing. 2016.

Elias BC. Chemical study and biological activities of crude extracts obtained from different cultures of Penicillium verrucosum Dierck. Ribeirão Preto: Faculdade de Ciências Farmacêuticas de Ribeirão Preto; 2003.

Ellman GL, Courtney KD, Andres JRV, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7(2): 88-95.

Escobar-Niño A, Liñeiro E, Amil F, Carrasco R, Chiva C, Fuentes C, et al. Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation. Sci Rep. 2019; 9(9860).

Fasahati P, Woo HC, Liu JJ. Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Appl Energy. 2015; 139(1): 175-187.

Ferreira Alves, JS. Estudo químico e biológico de Genipa americana L. (Jenipapo). [Master’s dissertation]. Natal: Universidade Federal do Rio Grande do Norte; 2014.

Finney DJ. Probit analysis. Cambridge: Cambridge University Press; 1971.

Freshney R. Culture of animal cells: a manual of basic technique and specialized applications. 6th ed. Scotland: Wiley; 2010.

Grzybowski A, Tiboni M, Silva MA, Chitolina RF, Passos M, Fontana JD. Synergistic larvicidal effect and morphological alterations induced by ethanolic extracts of Annona muricata and Piper nigrum against the dengue fever vector Aedes aegypti. Pest Manag Sci. 2013; 69(5): 589-601.

Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 1999; 86(6): 985.

Hazalin, MAMN, Ramasamy K, Lim SM, Wahab IA, Cole ALJ, Majeed ABA. Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia. BMC Complement Altern Med. 2009; 9(46).

Henriksson R, Holm S, Littbrand B. Interactions Between Antibiotics and Antineoplastic Drugs on Antibacterial Activity in Vitro. Acta Oncologica. 1990; 29(1): 43-6.

Katoch M, Singh G, Sharma S, Gupta N, Sangwan PL, Saxena AK. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) (Pennell Scrophulariaceae). BMC Complement Altern Med. 2014; 14(52): 52.

Kiviharju K, Nyyssölä A. Contributions of biotechnology to the production of mannitol. Recent Pat Biotechnol. 2008; 2(2): 73-8.

Lee CC, Houghton P. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J Ethnopharmacol. 2005; 100(3): 237-43.

Liang H, Xing Y, Chen J, Zhang D, Guo S, Wang C. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complement Altern Med. 2012; 12(238): 238.

Lima JB, Pereira Da Cunha M, Carneiro Da Silva R, Galardo AKR, Soares SS, Braga IA, et al. Resistance of Aedes aegypti to organophosphates in several municipalities in the state of Rio de Janeiro and Espirito Santo, Brazil. Am J Trop Med Hyg. 2003; 68: 329-33.

Lowry OH, Rosebrough NJ, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1): 265-275.

Majchrzak-Stiller B, Buchholz M, Peters I, et al. Oxathiazinane derivatives display both antineoplastic and antibacterial activity: a structure activity study. J Cancer Res Clin Oncol. 2023; 149: 9071-9083.

Mao Z, Lai D, Liu X, Fu X, Meng J, Wang A, et al. Dibenzo- α-pyrones: a new class of larvicidal metabolites against Aedes aegypti from the endophytic fungus Hyalodendriella sp. Ponipodef12. Pest Manag Sci. 2017; 73(7): 1478-85.

Marucci G, Buccioni M, Dal Bem D, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021; 190(1): 108352.

Morales G, Paredes A, Sierra P, Loyola LA. Antimicrobial activity of three baccharis species used in the traditional medicine of Northern Chile. Molecules. 2008; 13: 790-794.

Morževska EB, Bankina B, Kaņeps J. Botrytis genus fungi as causal agents of legume diseases: a review. Res Rural Dev. 2019; 2: 63-9.

Murugesan AG, Prabu CS, Selvakumar C. Biolarvicidal activity of extracellular metabolites of the keratinophilic fungus Trichophyton mentagrophytes against larvae of Aedes aegypti - a major vector for chikungunya and dengue. Folia Microbiol. 2009; 54(3): 213-6.

Nordin LM, Kadir AA, Zakaria ZA, Abdullah R, Abdullah MNH. In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispa against breast cancer cell lines, MCF-7 and MDA-MB-231. BMC Complement Altern Med. 2018; 18(1): 1-10.

Nurunnabi TR, Al-Majmaie S, Nakouti I, Nahar L, Rahman SMM, Sohrab MH, et al. Antimicrobial activity of kojic acid from endophytic fungus Colletotrichum gloeosporioides isolated from Sonneratia apetala, a mangrove plant of the Sundarbans. Asian Pac J Trop Med. 2018; 11(5): 350-354.

Ota A, Kawai S, Oda H, Iohara K, Murata K. Production of ethanol from mannitol by the yeast strain Saccharomyces paradoxus NBRC 0259. J Biosci Bioeng. 2013; 116(3): 327-32.

Patel TK, Williamson JD. Mannitol in plants, fungi, and plant–fungal interactions. Trends Plant Sci. 2016; 21(6): 486- 497.

Popli D, Anil V, Subramanyam AB, Namratha MN, Ranjitha R, Rao SN, et al. Endophyte fungi, Cladosporium species- mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol. 2018; 5(n):1-8.

Ragavendran C, Natarajan D. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. Environ Sci Pollut Res. 2015; 22(21): 17224-37.

Rani R, Sharma D, Chaturvedi M, Yadav JP. Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clin Microbiol. 2017; 6(3): 2-6.

Revathi K, Chandrasekaran R, Thanigaivel A, Senthil- Nathan S, Kirubakaran S, Sathish-Narayanan S. Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. Pestic Biochem Physiol. 2013; 107(3): 369-76.

Ripardo-Filho HS, Ruíz VC, Suárez I, Moraga J, Aleu J, Collado IG. From genes to molecules, secondary metabolism in Botrytis cinerea: new insights into anamorphic and teleomorphic stages. Plants. 2023; 12: 553.

Riss S, Mohamed F, Dayal S, Cecil T, Stifta A, Bachleitner- Hofmann T, et al. Peritoneal metastases from colorectal cancer: patient selection for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Eur J Surg Oncol. 2013; 39(9): 931-37.

Saha BC, Racine FM. Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol. 2011; 89(4): 879-91.

Santos IP. Caracterização dos metabólitos produzidos pelo fungo Nigrospora sphaerica (sacc.) mason endofítico de Indigofera suffruticosa mill. E avaliação do potencial biotecnológico [PhD thesis]. Recife: Universidade Federal de Pernambuco; 2015.

Salvat A, Antonacci L, Fortunato RH, Suarez EY, Godoy HM. Antimicrobial activity in methanolic extracts of several plant species from northern Argentina. Phytomedicine. 2004; 1(2–3): 230-4.

Salvatore MM, Andolfi A. Phytopathogenic fungi and toxicity. Toxins. 2021; 13(10): 689.

Silva AK. Manual de vigilância e epidemiológica e sanitária. 2nd ed. Goiânia: AB; 2015.

Silva CB, Pott A, Elifio-Esposito S, Dalarmi L, Nascimento KF, Burci L, et al. Effect of donepezil, tacrine, galantamine and rivastigmine on acetylcholinesterase inhibition in dugesia tigrine. Molecules. 2016; 21(1): 53

Singh B, Thakur A, Kaur S, Chadha BS, Kaur A. Acetylcholinesterase inhibitory potential and insecticidal activity of an endophytic Alternaria sp. from Ricinus communis. Appl Biochem Biotechnol. 2012; 168(5): 991-1002.

Sundaravadivelan C, Padmanabhan MN. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res. 2014; 21(6): 4624-33.

Tarman K, Lindequist U, Wende K, Porzel A, Arnold N, Wessjohann LA. Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indonesian marine habitats. Mar Drugs. 2011; 9(3): 294-306.

Tenny S, Patel R, Thorell W. Mannitol. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470392/

» https://www.ncbi.nlm.nih.gov/books/NBK470392/

Tomaszewska L, Rywinska A, Gładkowski W. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol. 2012; 39: 1333-43.

Valotto CFB, Silva HHG, Cavasin G, Geris R, Filho ER, Silva IG. Alterações ultraestruturais em larvas de Aedes aegypti submetidas ao diterpeno labdano, isolado de Copaifera reticulata (Leguminosae), e à uma fração rica em taninos de magonia pubescens (Sapindaceae). Rev Soc Bras Med Trop. 2011; 44(2): 194-200.

Wang J, Kim YM, Rhee HS, Lee MW, Park JM. Bioethanol production from mannitol by a new isolated bacterium, Enterobacter sp. JMP3. Bioresour Technol. 2013; 135(sn):199-206.

Wang Y, Lai Z, Li XX, Yan RM, Zhang ZB, Yang HL, et al. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain. World J Microbiol Biotechnol. 2016; 32(20).

Wang K, Zhang H, Zhu W, Peng J, Li X, Wang Y, et al. Preliminary study of resistance mechanism of Botrytis cinerea to SYAUP-CN-26. Molecules. 2022; 27: 936.

World Health Organization. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Geneva: WHO; 1981a.

World Health Organization. Criteria and meaning of tests for determining the susceptibility or resistance of insects to insecticides. Geneva: WHO; 1981b.

Yousfi H, Ranque S, Rolain JM, Bittar F. In vitro polymyxin activity against clinical multidrug-resistant fungi. Antimicrob Resist Infect Control. 2019; 8: 66.

Yu FX, Li L, Chen Y, Yang YH, Li GH, Zhao PJ. Four new steroids from the endophytic fungus Chaetomium sp. M453 derived of Chinese Herbal Medicine Huperzia serrata. Fitoterapia. 2016.

Yu KX, Wong CL, Ahmad, R, Jantan I. Larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induced by seaweed extracts in Aedes aegypti (Diptera: Culicidae). Asian Pac J Trop Med. 2015; 8(12): 1006-12.

Xu M, Huang Z, Zhu W, Liu Y, Bai X, Zhang H, Fusarium-Derived Secondary Metabolites with Antimicrobial Effects. Molecules. 2023; 28: 3424.

Downloads

Published

2024-11-05

Issue

Section

Article

How to Cite

Botrytis cinerea: acetylcholinesterase inhibition, cytotoxicity, antimicrobial, larvicidal activity and metabolite isolated from fungal extract. (2024). Brazilian Journal of Pharmaceutical Sciences, 60. https://doi.org/10.1590/