The role of modeling and simulation to improve the treatment of fungal infections caused by Cryptococcus

A literature review

Authors

  • Keli Jaqueline Staudt Pharmaceutical Sciences Graduate Program of Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
  • Laura Ben Olivo Pharmaceutical Sciences Graduate Program of Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
  • Izabel Almeida Alves Laboratory of Pharmacokinetics and Pharmacometrics, Faculty of Pharmacy, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
  • Bibiana Verlindo de Araújo Pharmaceutical Sciences Graduate Program of Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil https://orcid.org/0000-0002-9706-0389

DOI:

https://doi.org/10.1590/

Keywords:

Antifungals, Cryptococcosis, Mathematical modeling, Pharmacodynamics, Pharmacokinetics

Abstract

The treatment of fungal infections presents problems in relation to toxicity, pharmacokinetic properties, and undesirable side effects among other factors. An alternative to clarify some of these problems is the use of mathematical modeling and simulation of the pharmacokinetics and pharmacodynamics data of antifungals, in order to seek greater support in decision making regarding the treatment of Cryptococcus infection. Here, we describe the results of a literature review focusing on studies that used mathematical modeling and simulation of pharmacokinetic and pharmacodynamic data of antifungals used in the treatment of cryptococcosis. Through this review, it was possible to identify that most of the content presented refers to studies of modeling, which refer to two very important modeling approaches that provide subsidies for an adequate treatment. Studies that performed Monte Carlo simulations and evaluated the probability of reaching the target show that many treatments used are ineffective, and it is necessary to investigate new models that include more information about these difficult to treat infections. These mathematical tools are extremely important, because through the correlation of pharmacokinetics and pharmacodynamics data of an antifungal, it is possible to make an appropriate decision for the treatment of fungal infections caused by Cryptococcus spp.

Downloads

Download data is not yet available.

References

Alhadab AA, Rhein J, Tugume L, Musubire A, Williams DA, Abassi M, et al. Pharmacokinetics-Pharmacodynamics Of Sertraline As An Antifungal In Hiv-Infected Ugandans With Cryptococcal Meningitis. J Pharmacokinet Pharmacodyn. 2019;46:565–576.

Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, et al. Effect Of Obesity On The Population Pharmacokinetics Of Fluconazole In Critically Ill Patients. Antimicrob. Agents Chemother. 2016;60:6550–6557.

Alves IA, Staudt KJ, Carreño FO, De Araujo GL, De Miranda Silva C, Rates SMK et al. Population pharmacokinetic modeling to describe the total plasma and free brain levels of fluconazole in healthy and Cryptococcus Neoformans infected rats: How does the infection impact the drug’s levels on biophase? Pharm Res. 2018;35:1–10.

Alves IA, Staudt KJ, De Miranda Silva C, De Araujo GL, Dalla Costa T, De Araujo BV. Influence of experimental cryptococcal meningitis in wistar rats on voriconazole brain penetration assessed by microdialysis. Antimicrob. Agents Chemother. 2017;61:1–8.

Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, Van De Veerdonk FL et al. Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect Dis. 2017;17(12):e393-e402.

Bahn YS, Sun S, Heitman J, Lin X. Microbe Profile: Cryptococcus Neoformans. Species Complex. Microbiol. 2020;166(9):797-799.

Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017;45(6):737-779.

Black LA, Krockenberger MB, Kimble B, Govendir M. Pharmacokinetics of fluconazole following intravenous and oral administration to koalas (Phascolarctos cinereus). J Vet Pharmacol Ther. 2014;37(1):90-8.

Cristofoletti R, Charoo NA, Dressman JB. Exploratory investigation of the limiting steps of oral absorption of fluconazole and ketoconazole in children using an in silico pediatric absorption model. J Pharm Sci. 2016;105(9):2794–2803.

Fan J, De Lannoy Iam. Pharmacokinetics. Biochem Pharmacol. 2014;87:93–120.

Fisher KM, Montrief T, Ramzy M, Koyfman A, Long B. Cryptococcal meningitis: a review for emergency clinicians. Intern Emerg Med. 2021;16(4):1031-1042.

Flevari A, Theodorakopoulou M, Velegraki A, Armaganidis A, Dimopoulos G. Treatment of invasive candidiasis in the elderly: A Review. Clin Interv Aging. 2013;8:1199-1208.

Frechen S, Junge L, Saari TI, Suleiman AA, Rokitta D, Neuvonen PJ, et al. A semiphysiological population pharmacokinetic model for dynamic inhibition of liver and gut wall cytochrome P450 3a By Voriconazole. Clin Pharmacokinet. 2013;52(9):763–781.

Hammarlund-Udenaes M. Microdialysis as an important technique in systems pharmacology— A historical and methodological review. AAPS J. 2017;19(5):1294–1303.

Hens B, Pathak SM, Mitra A, Patel N, Liu B, Patel S, et al. In silico modeling approach for the evaluation of gastrointestinal dissolution, supersaturation, and precipitation of posaconazole. Mol Pharm. 2017;14(12):4321-4333.

Hens B, Talattof A, Paixão P, Bermejo M, Tsume Y, Löbenberg R, et al. Measuring the impact of gastrointestinal variables on the systemic outcome of two suspensions of posaconazole by a PBPK model. AAPS J. 2018;20(3):57.

Hope W, Stone NRH, Johnson A, McEntee L, Farrington N, Santoro-Castelazo A, et al. Fluconazole monotherapy is a suboptimal option for initial treatment of cryptococcal meningitis because of emergence of resistance. mBio. 2019;10(6):e02575-19.

Hope WW, Drusano GL. Antifungal Pharmacokinetics And Pharmacodynamics: Bridging From The Bench To Bedside. Clin Microbiol Infect. 2009;15(7):602–612.

Joerger M. Covariate pharmacokinetic model building in oncology and its potential clinical relevance. AAPS J. 2012;14(1):119–132.

Johnson TN, Bonner JJ, Tucker GT, Turner DB, Jamei M. Development and applications of a physiologically-based model of paediatric oral drug absorption. Eur J Pharm Sci. 2018; 115:57-67.

Kirbs C, Kluwe F, Drescher F, Lackner E, Matzneller P, Weiss J, et al. High voriconazole target-site exposure after approved sequence dosing due to nonlinear pharmacokinetics assessed by long-term microdialysis. Eur J Pharm Sci. 2019;131:218-229.

Kon AS. Consenso em criptococose - 2008. Rev Soc Bras Med Trop. 2008;41(5):524–544.

Kovanda LL, Desai AV, Lu Q, Townsend RW, Akhtar S, Bonate P, et al. Isavuconazole population pharmacokinetic analysis using nonparametric estimation in patients with invasive fungal disease (results from the VITAL study). Antimicrob Agents Chemother. 2016;60(8):4568-76.

Kovanda LL, Giamberardino C, McEntee L, Toffaletti DL, Franke KS, Bartuska A, et al. Pharmacodynamics of isavuconazole in a rabbit model of cryptococcal meningoencephalitis. Antimicrob Agents Chemother. 2019;63(9):e00546-19.

Kristoffersson AN, David-Pierson P, Parrott NJ, Kuhlmann O, Lave T, Friberg LE, et al. Simulation-based evaluation of PK/PD indices for meropenem across patient groups and experimental designs. Pharm Res. 2016;33(5):1115-25.

Kuepfer L, Niederalt C, Wendl T, Schlender JF, Willmann S, Lippert J, et al. Applied concepts in PBPK modeling: How to build a PBPK/PD model. CPT Pharmacometrics Syst Pharmacol. 2016;5(10):516-531.

Lepak A, Andes D. Fungal sepsis: optimizing antifungal therapy in the critical care setting. Crit Care Clin. 2011 Jan;27(1):123-47.

Lestner J, McEntee L, Johnson A, Livermore J, Whalley S, Schwartz J, et al. Experimental models of short courses of liposomal amphotericin B for induction therapy for cryptococcal meningitis. Antimicrob Agents Chemother. 2017;24;61(6):e00090-17.

Li X, Frechen S, Moj D, Lehr T, Taubert M, Hsin CH, et al. A Physiologically Based Pharmacokinetic Model of Voriconazole Integrating Time-Dependent Inhibition of CYP3A4, Genetic Polymorphisms of CYP2C19 and Predictions of Drug-Drug Interactions. Clin Pharmacokinet. 2020;59(6):781-808.

Li Y, Sun L, Lu C, Gong Y, Li M, Sun S. Promising antifungal targets against Candida albicans based on ion homeostasis. Front Cell Infect Microbiol. 2018;8:286.

Liu B, Crewe HK, Ozdemir M, Rowland Yeo K, Tucker G, Rostami-Hodjegan A. The absorption kinetics of ketoconazole plays a major role in explaining the reported variability in the level of interaction with midazolam: Interplay between formulation and inhibition of gut wall and liver metabolism. Biopharm Drug Dispos. 2017;38(3):260-270.

Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4):e38.

Nett JE, Andes DR. Antifungal agents: Spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am. 2016;30(1):51-83.

Nielsen EI, Cars O, Friberg LE. Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother. 2011;55(10):4619-30.

O’Connor L, Livermore J, Sharp AD, Goodwin J, Gregson L, Howard SJ, et al. Pharmacodynamics of liposomal amphotericin B and flucytosine for cryptococcal meningoencephalitis: safe and effective regimens for immunocompromised patients. J Infect Dis. 2013;208(2):351-61.

Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1-50.

Pathak SM, Ruff A, Kostewicz ES, Patel N, Turner DB, Jamei M. Model-based analysis of biopharmaceutic experiments to improve mechanistic oral absorption modeling: An integrated in vitro in vivo extrapolation perspective using ketoconazole as a model drug. Mol Pharm. 2017;14(12):4305-4320.

Qi F, Zhu L, Li N, Ge T, Xu G, Liao S. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole. Int J Antimicrob Agents. 2017;49(4):403-409.

Rathi C, Lee RE, Meibohm B. Translational PK/PD of anti-infective therapeutics. Drug Discov Today Technol. 2016;21-22:41-49.

Reuwsaat JCV, Motta H, Garcia AWA, Vasconcelos CB, Marques BM, Oliveira NK, et al. A Predicted Mannoprotein Participates in Cryptococcus gattii Capsular Structure. mSphere. 2018;3(2):e00023-18.

Ruff A, Fiolka T, Kostewicz ES. Prediction of Ketoconazole absorption using an updated in vitro transfer model coupled to physiologically based pharmacokinetic modelling. Eur J Pharm Sci. 2017;100:42-55.

Santos JRA, César IC, Costa MC, Ribeiro NQ, Holanda RA, Ramos LH, et al. Pharmacokinetics/pharmacodynamic correlations of fluconazole in murine model of cryptococcosis. Eur J Pharm Sci. 2016;92:235-43.

Schmidt S, Barbour A, Sahre M, Rand KH, Derendorf H. PK/PD: new insights for antibacterial and antiviral applications. Curr Opin Pharmacol. 2008;8(5):549-56.

Silva DA, Duque MD, Davies NM, Löbenberg R, Ferraz HG. Application of in silico tools in clinical practice using ketoconazole as a model drug. J Pharm Pharm Sci. 2018;21(1s):242s-253s.

Sime FB, Roberts MS, Roberts JA. Optimization of dosing regimens and dosing in special populations. Clin Microbiol Infect. 2015;21(10):886-93.

Stott KE, Beardsley J, Kolamunnage-Dona R, Castelazo AS, Kibengo FM, Mai NTH, et al. Population pharmacokinetics and cerebrospinal fluid penetration of fluconazole in adults with cryptococcal meningitis. Antimicrob Agents Chemother. 2018;27;62(9):e00885-18.

Sudan A, Livermore J, Howard SJ, Al-Nakeeb Z, Sharp A, Goodwin J, et al. Pharmacokinetics and pharmacodynamics of fluconazole for cryptococcal meningoencephalitis: implications for antifungal therapy and in vitro susceptibility breakpoints. Antimicrob Agents Chemother. 2013;57(6):2793-800.

Sy SK, Zhuang L, Derendorf H. Pharmacokinetics and pharmacodynamics in antibiotic dose optimization. Expert Opin Drug Metab Toxicol. 2016;12(1):93-114.

Vieira F, Nascimento T. Resistência a fármacos antifúngicos por candida e abordagem terapêutica. Rev Port Farmacoter. 2017;9(3):29–36.

Wang W, Zheng N, Zhang J, Huang X, Yu S. Effect of Efflux Transporter inhibition on the distribution of fluconazole in the rat brain. Neurochem Res. 2017;42(8):2274-2281.

Watt KM, Cohen-Wolkowiez M, Barrett JS, Zhao P, Brouwer KLR, Edginton AN. Physiologically Based Pharmacokinetic Approach to Determine Dosing on Extracorporeal Life Support: Fluconazole in Children on ECMO. Citation: CPT Pharmacometrics Syst. Pharmacol. 2018;7, 629–637.

WHO. Guidelines For The Diagnosis, prevention and management of cryptococcal disease, 2018;1–62.

Wu JQ, Shao K, Wang X, Wang RY, Cao YH, Yu YQ, et al. In vitro and in vivo evidence for amphotericin B as a P-glycoprotein substrate on the blood-brain barrier. Antimicrob Agents Chemother. 2014;58(8):4464-9.

Zane NR, Thakker DR. A physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet. 2014;53(12):1171-82.

Zhao HZ, Wang RY, Wang X, Jiang YK, Zhou LH, Cheng JH, et al. High dose fluconazole in salvage therapy for HIV-uninfected cryptococcal meningitis. BMC Infect Dis. 2018;12;18(1):643.

Downloads

Published

2024-11-05

Issue

Section

Article

How to Cite

The role of modeling and simulation to improve the treatment of fungal infections caused by Cryptococcus: A literature review. (2024). Brazilian Journal of Pharmaceutical Sciences, 60. https://doi.org/10.1590/