Determination of cyanide in whole seeds and brans of linseed (Linum usitatissimum Linn) by molecular spectrophotometry

Authors

  • Marcelle Leandro da Silva Pereira Universidade Federal do Rio Grande do Norte
  • Rita de Cássia Paulino de Souza Universidade Federal do Rio Grande do Norte
  • Juliana Vilar Furtado de Medeiros Universidade Federal do Rio Grande do Norte
  • George Queiroz de Brito Universidade Federal do Rio Grande do Norte
  • Aline Schwarz Universidade Federal do Rio Grande do Norte https://orcid.org/0000-0002-1341-8874

DOI:

https://doi.org/10.1590/

Keywords:

Linseed;, Seed;, Bran;, Cyanide;, Toxicity

Abstract

The addition of linseed (Linum usitatissimum Linn) in the diet, as a functional food, has increased over the years. However, it possesses cyanogenic glycosides. This study aimed to quantify and compare cyanide concentration in whole seed and bran of brown and golden types to establish a safe limit of intake. Three commercial labels, from brown and golden whole seed types (Ab, Ag, Bb, Bg, Cb and Cg), and six commercial labels of brown and golden bran (1b, 2g, 3g, 4b, 5g, and 6b), were selected, totalizing twelve samples. Total cyanide concentration was quantified by a colorimetric method employing alkaline picrate, after acid hydrolysis. The whole seed cyanide values were between 348.4 and 473.20 µg/g and the bran cyanide values were between 459.53 and 639.35 μg/g. The analyzed bran presented increased cyanide concentrations than the whole seeds with no differences between brown and golden types. Food able to produce cyanide less than 90 µg/kg body weight, daily, is considered secure for consumption. Considering this limit and analyzed samples, it is safe to eat approximately two tablespoons of seeds or one tablespoon of bran. These results point out the importance of cyanide amount daily intake information to be in linseed packaging, to ensure secure consumption.

Downloads

Download data is not yet available.

References

Abraham K, Buhrke T, Lampen A. Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: a crossover study in humans. Arch Toxicol. 2016;90(3):559-74.

Attia YA, Al-Harthi MA, Al-Sagan AA, Alqurashi AD, Korish MA, Abdulsalam NM, Olal MJ, Bovera F. Dietary Supplementation with Different ω-6 to ω-3 Fatty Acid Ratios Affects the Sustainability of Performance, Egg Quality, Fatty Acid Profile, Immunity and Egg Health Indices of Laying Hens. Agriculture. 2022a;12:1712. https://doi.org/10.3390/agriculture12101712

» https://doi.org/10.3390/agriculture12101712

Attia YA, Al-Harthi MA, Sagan AAA, Abdulsalam NM, Hussein EOS, Olal MJ. Egg Production and Quality, Lipid Metabolites, Antioxidant Status and Immune Response of Laying Hens Fed Diets with Various Levels of Soaked Flax Seed Meal. Agriculture. 2022b;12:1402. https://doi.org/10.3390/agriculture12091402

» https://doi.org/10.3390/agriculture12091402

Attia YA, Al-Harthi MA, Sagan AAA, Hussein EOS, Alhotanc RA, Sulimanc GM, Abdulsalamd NM, Olal MJ. Responses of egg quality sustainability, sensory attributes and lipid profile of eggs and blood to different dietary oil supplementations and storage conditions. Italian J Anim Sci. 2022c;21(1):1160-69. https://doi.org/10.1080/1828051X.2022.2101390

» https://doi.org/10.1080/1828051X.2022.2101390

Bacala R, Barthet V. Development of extraction and gas chromatography analytical methodology for cyanogenic glycosides in flaxseed (Linum usitatissimum). J AOAC Internat. 2007;90(1):153-61. doi: 10.1093/jaoac/90.1.153

» https://doi.org/10.1093/jaoac/90.1.153

Bradbury JH. Development of a sensitive picrate method to determine total cyanide and acetone cyanohydrin contents of gari from cassava. Food Chem. 2009;113(4):1329-33.

Bekhit AEDA, Shavandi A, Jodjaja T, Birch J, Teh S, Ahmed IAM, Al-Juhaimi FY, Saeedi P, Bekhit AA. Flaxseed: composition, detoxification, utilization, and opportunities. Biocat Agric Biotech. 2018;13:129-52. doi: 10.1016/j.bcab.2017.11.017.

» https://doi.org/10.1016/j.bcab.2017.11.017

Cressey P, Reeve J. Metabolism of cyanogenic glycosides: a review. Food Chem Toxicol. 2019;125:225-32. doi: 10.1016/j.fct.2019.01.002.

» https://doi.org/10.1016/j.fct.2019.01.002

Cressey P, Saunders D, Goodman J. Cyanogenic glycosides in plant-based foods available in New Zealand. Food Additives & Contaminants. Part A. Chem. Anal. Contr. Exp. Risk Assess. 2013;30(11):1946-53. doi: 10.1080/19440049.2013.825819.

» https://doi.org/10.1080/19440049.2013.825819

Dzuvor CKO, Taylor JT, Acquah C, Pan S, Agyei D. Bioprocessing of functional ingredients from flaxseed. Molecules. 2018;23(10):2444. Doi: 10.3390/molecules23102444.

» https://doi.org/10.3390/molecules23102444

Ikediobi C, Onyia G, Eluwah CE. A rapid and inexpensive enzymatic assay for total cyanide in cassava (Manihot esculenta Crantz) and cassava products. Agric Biol Chem. 1980;44(12):2803-09.

Joint FAO/WHO Expert Committee on Food Additives. JECFA. 2012. Cyanogenic glycosides. In: WHO food additives series no. 65, safety evaluation of certain food additives and contaminants. WHO, Rome, 171-323. ISBN: 978-92-4-166065-5. [Cited 2022 April]. Avaiable from: Avaiable from: http://www.fao.org/policy-support/mechanisms/mechanisms-details/en/c/428589/

» http://www.fao.org/policy-support/mechanisms/mechanisms-details/en/c/428589/

Keykhasalar R, Tabrizi MH, Ardalan P, Khatamian N. The apoptotic, cytotoxic, and antiangiogenic impact of Linum usitatissimum seed essential oil nanoemulsions on the human ovarian cancer cell line A2780. Nutr Cancer. 2021;73(11-12):2388-96. doi: 10.1080/01635581.2020.1824001.

» https://doi.org/10.1080/01635581.2020.1824001

Midio AF, Martins DI. Agentes tóxicos naturalmente presentes em alimentos. Midio AF, Martins DI. Toxicologia de alimentos. 1st ed, São Paulo, Ed. Varela, 2000, p. 31-57.

Mueed A, Ibrahim M, Shibli S, Madjirebaye P, Deng Z, Jahangir M. The fate of flaxseed-lignans after oral administration: A comprehensive review on its bioavailability, pharmacokinetics, and food design strategies for optimal application. Crit Rev Food Sci Nutr. 2022a. DOI: 10.1080/10408398.2022.2140643

» https://doi.org/10.1080/10408398.2022.2140643

Mueed A, Shibli S, Jahangir M, Jabbar S, Deng Z. A comprehensive review of flaxseed (Linum usitatissimum L.): health-affecting compounds, mechanism of toxicity, detoxification, anticancer and potential risk. Crit Rev Food Sci Nutr . 2022b. DOI: 10.1080/10408398.2022.2092718.

» https://doi.org/10.1080/10408398.2022.2092718

Rosling H. Cyanide exposure from linseed. The Lancet. 1993;341(8838):117.

Safdar B, Pang Z, Liu X, Rashid MT, Jatoi MA. Structural and functional properties of raw and defatted flaxseed flour and degradation of cynogenic contents using different processing methods. J Food Proc Engineer. 2020;43(6):e13406. doi: 10.1111/jfpe.13406.

» https://doi.org/10.1111/jfpe.13406

Schrenk D, Bignami M, Bodin L, Chipman JK, Del Mazo J, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Leblanc JC, Nebbia CS. Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels. EFSA Journ. 2019;17(4):5662. doi: 10.2903/j.efsa.2019.5662.

» https://doi.org/10.2903/j.efsa.2019.5662

Schwarz A, Martins I. Glicosídeos cianogênicos - Determinação de cianeto em mandioca por espectrofotometria de absorção molecular. Moreau RLM, Siqueira MEPB. Toxicologia Analítica. 2nd ed, Rio de Janeiro, Guanabara Koogan, 2016, p.283-86.

Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: a review. Trends Food Sci Technol. 2014;38(1):5-20.

Shim YY, Kim JH, Cho JY, Reaney MJT. Health benefits of flaxseed and its peptides (linusorbs). Crit Rev Foos Scie Nutr. 2022. DOI: 10.1080/10408398.2022.2119363.

» https://doi.org/10.1080/10408398.2022.2119363

Sirotkin AV. Influence of flaxseed (Linum usitatissimum) on female reproduction. Planta Med. 2023;89:608-15. DOI 10.1055/a-2013-2966.

» https://doi.org/10.1055/a-2013-2966

Tivana LD, da Cruz Francisco J, Zelder F, Bergenstahl B, Dejmek P. Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products. Food Chem . 2014;158:20-7.

William S. Official methods of analysis of the Association of Official Analytical Chemists. 14.ed, Washington, AOAC International, 1984.

Wogan GN, Marletta MA. Componentes prejudiciales e potencialmente prejudiciales de los alimentos. Fennema OR. Química de los alimentos. 2nd ed, Zaragoza: Acribia, 1993, p. 775-811.

Yamashita T, Sano T, Hashimoto T, Kanazawa K. Development of a method to remove cyanogen glycosides from flaxseed meal. Int J Food Sci Tech. 2007;42(1):70-5. doi: 10.1111/j.1365-2621.2006.01212.x.

» https://doi.org/10.1111/j.1365-2621.2006.01212.x

Zuk M, Pelc K, Szperlik J, Sawula A, Szopa J. Metabolism of the cyanogenic glucosides in developing flax: metabolic analysis, and expression pattern of genes. Metabolites. 2020; 10 (7):288. doi: 10.3390/metabo10070288.

» https://doi.org/10.3390/metabo10070288

Downloads

Published

2023-08-28

Issue

Section

Article

How to Cite

Determination of cyanide in whole seeds and brans of linseed (Linum usitatissimum Linn) by molecular spectrophotometry. (2023). Brazilian Journal of Pharmaceutical Sciences, 59, e23059. https://doi.org/10.1590/