Effects of Chitosan Nanoparticles with Long Synthetic siRNAs Targeting VEGF in Triple-Negative Breast Cancer Cells

Authors

  • Birnur Cömez Marmara University. Faculty of Pharmacy, Istanbul, Turkey
  • Jülide Akbuğa Istanbul Medipol University. Faculty of Pharmacy, Istanbul, Turkey

DOI:

https://doi.org/10.1590/s2175-97902023e22304

Keywords:

siRNA, VEGF, Chitosan, Nanoparticle, Breast cancer

Abstract

Vascular endothelial growth factor (VEGF) is an essential angiogenic factor in breast cancer development and metastasis. Small interfering RNAs (siRNAs) can specifically silence genes via the RNA interference pathway, therefore were investigated as cancer therapeutics. In this study, we investigated the effects of siRNAs longer than 30 base pairs (bp) loaded into chitosan nanoparticles in triple-negative breast cancer cells, compared with conventional siRNAs. 35 bp long synthetic siRNAs inhibited VEGF gene expression by 51.2% and increased apoptosis level by 1.75-fold in MDA-MB-231 cell lines. Furthermore, blank and siRNA-loaded chitosan nanoparticles induced expression of IFN-γ in breast cancer cells. These results suggest that long synthetic siRNAs can be as effective as conventional siRNAs, when introduced into cells with chitosan nanoparticles.

Downloads

Download data is not yet available.

References

Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release. 2004; 100(1): 5-28.

Amarzguioui M, Lundberg P, Cantin E, Hagstrom J, Behlke MA, Rossi JJ. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc. 2006; 1(2):508-517.

Ayoub NM, Jaradat SK, Al-Shami KM, Alkhalifa AE. Targeting Angiogenesis in Breast Cancer: Current Evidence and Future Perspectives of Novel Anti-Angiogenic Approaches. Front Pharmacol. 2022; 3:838133.

Bhasarkar J, Bal D. Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids. J Appl Biomater Funct Mater. 2019;17(2).

Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42(26):7967-7975.

Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997;14(10):1431-1436.

Cano-Vega MA, Deng M, Pinal R. Modular solid dosage form design - Application to pH-independent release of a weak-base API. Int J Pharm. 2021;601:120518.

Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol. 2018;9:847.

Chang CI, Kang HS, Ban C, Kim S, Lee DK. Dual-target gene silencing by using long, synthetic siRNA duplexes without triggering antiviral responses. Mol Cells. 2009;27(6):689-695.

Chen J, Sun X, Shao R, Xu Y, Gao J, Liang W. VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer. Int J Nanomed. 2017;12:6075-6088.

Dahlgren C, Wahlestedt C, Thonberg H. No induction of anti-viral responses in human cell lines HeLa and MCF-7 when transfecting with siRNA or siLNA. Biochem Biophys Res Commun. 2006;341(4):1211-1217.

Dong D, Gao W, Liu Y, Qi XR. Therapeutic potential of targeted multifunctional nanocomplex co-delivery of siRNA and low-dose doxorubicin in breast cancer. Cancer Lett. 2015;359(2):178-186.

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494-498.

Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces. 2012;90:21-27.

Feng Q, Yu MZ, Wang JC, Hou WJ, Gao LY, Ma XF, et al. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Biomaterials. 2014;35(18):5028-5038.

Ge YL, Zhang X, Zhang JY, Hou L, Tian RH. The mechanisms on apoptosis by inhibiting VEGF expression in human breast cancer cells. Int Immunopharmacol. 2009;9(4):389-395.

Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95(8):4607-4612.

Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215.

Judge A, MacLachlan I. Overcoming the Innate Immune Response to Small Interfering RNA. Hum Gene Ther. 2008;19(2):111-124.

Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release . 2006;115(2):216-225.

Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005;23(2):222-226.

Kim DH, Rossi JJ. RNAi mechanisms and applications. Biotechniques. 2008;44(5):613-616.

Kumar M, Kong X, Behera AK, Hellermann GR, Lockey RF, Mohapatra SS. Chitosan IFN-γ-pDNA Nanoparticle (CIN) Therapy for Allergic Asthma. Genet Vaccines Ther. 2003;1(1):3.

Lee HW, Choi SJ, Yoo YM, Sohn JH, Koh SB, Park KS. Apoptosis induced by nonspecific effects of siRNA in human umbilical vein endothelial cell. Toxicol Environ Health Sci. 2012;4(1):50-56.

Leung AKK, Tam YYC, Cullis PR. Lipid nanoparticles for short interfering RNA delivery. Adv Genet. 2014;88:71-110.

Malmo J, Sørgård H, Vårum KM, Strand SP. siRNA delivery with chitosan nanoparticles: Molecular properties favoring efficient gene silencing. J Control Release . 2012;158(2):261-268.

Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017;9(4):53.

Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108-119.

Peng W, Chen J, Qin Y, Yang Z, Zhu YY. Long double-stranded multiplex siRNAs for dual genes silencing. Nucleic Acid Ther. 2013;23(4):281-288.

Raja MA, Katas H, Jing Wen T. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers. PLoS One. 2015;10(6):e0128963.

Rojanarata T, Opanasopit P, Techaarpornkul S, Ngawhirunpat T, Ruktanonchai U. Chitosan-thiamine pyrophosphate as a novel carrier for siRNA delivery. Pharm Res . 2008;25(12):2807-2814.

Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm . 2010;399(1-2):1-11.

Treeck O, Kindzorra I, Pauser K, Treeck L, Ortmann O. Expression of icb-1 gene is interferon-gamma inducible in breast and ovarian cancer cell lines and affects the IFN gamma-response of SK-OV-3 ovarian cancer cells. Cytokine. 2005;32(3-4):137-142.

Vasiliev YM. Chitosan-based vaccine adjuvants: incomplete characterization complicates preclinical and clinical evaluation. Expert Rev Vaccines. 2014;14(1):37-53.

Wojcik-Pastuszka D, Krzak J, Macikowski B, Berkowski R, Osiński B, Musiał W. Evaluation of the Release Kinetics of a Pharmacologically Active Substance from Model Intra-Articular Implants Replacing the Cruciate Ligaments of the Knee. Materials (Basel). 2019;12(8):1202.

Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med. 2017;14(3):228-241.

Xue L, Firestone GL, Bjeldanes LF. DIM stimulates IFN gamma gene expression in human breast cancer cells via the specific activation of JNK and p38 pathways. Oncogene. 2005;24(14):2343-2353.

Zarychta E, Ruszkowska-Ciastek B. Cooperation between Angiogenesis, Vasculogenesis, Chemotaxis, and Coagulation in Breast Cancer Metastases Development: Pathophysiological Point of View. Biomedicines. 2022;10:300.

Downloads

Published

2023-06-19

Issue

Section

Original Article

How to Cite

Effects of Chitosan Nanoparticles with Long Synthetic siRNAs Targeting VEGF in Triple-Negative Breast Cancer Cells. (2023). Brazilian Journal of Pharmaceutical Sciences, 59, e22304. https://doi.org/10.1590/s2175-97902023e22304