Cytotoxicity evaluation of haloperidol, clozapine and a new molecule with antipsychotic potential, PT-31, in NIH-3T3 cells

Authors

  • Carlos Henrique Thomazi Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
  • Alana Witt Hansen Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
  • Juliana Machado Kayser Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
  • Marina Griebeler Moreira Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
  • Marina Galdino da Rocha Pitta Universidade Federal de Pernambuco, Recife, Brazil
  • Ivan da Rocha Pitta Universidade Federal de Pernambuco, Recife, Brazil
  • Ana Luiza Ziulkoski Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
  • Andresa Heemann Betti Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil

DOI:

https://doi.org/10.1590/s2175-97902023e21738

Keywords:

Cytotoxicity, Clozapine, Haloperidol, NIH-3T3 cells, PT-31

Abstract

Schizophrenia is an illness that affects 26 million people worldwide. However, conventional antipsychotics present side effects and toxicity, highlighting the need for new antipsychotics. We aimed to evaluate the cytotoxicity of haloperidol (HAL), clozapine (CLO), and a new molecule with antipsychotic potential, PT-31, in NIH-3T3 cells. The neutral red uptake assay and the MTT assay were performed to evaluate cell viability and mitochondrial activity, morphological changes were assessed, and intracellular reactive oxygen species (ROS) detection was performed. HAL and CLO (0.1 μM) showed a decrease in cell viability in the neutral red uptake assay and in the MTT assay. In addition, cell detachment, content decrease, rounding and cell death were also observed at 0.1 μM for both antipsychotics. An increase in ROS was observed for HAL (0.001, 0.01 and 1 μM) and CLO (0.01 and 1 μM). PT-31 did not alter cell viability in any of the assays, although it increased ROS at 0.01 and 1 μM. HAL and CLO present cytotoxicity at 0.1 μM, possibly through apoptosis and necrosis. In contrast, PT-31 does not present cytotoxicity to NIH-3T3 cells. Further studies must be performed for a better understanding of these mechanisms and the potential risk of conventional antipsychotics.

Downloads

Download data is not yet available.

References

Aleman A, Kahn RS, Selten J-P. Sex differences in the Risk of Schizophrenia: Evidence From Meta-Analysis. Arch Gen Psychiatry. 2003;60(6):565-571.

Betti AH, Antonio CB, Herzfeldt V, Pitta MGdR, Pitta IR, Rego J-L, et al. PT-31, a putative α2-adrenoceptor agonist, is effective in schizophrenia cognitive symptoms in mice. Behav Pharmacol. 2019;30(7):574-587.

Bigolin C, Oliveira TSS, Silva LC, Ayres T, Menezes JM, Pitta IR, et al. Evaluation of the potential toxicity of haloperidol, clozapine and a new putative antipsychotic molecule, PT-31, in an alternative toxicity model, C. elegans. IJIER. 2020;8(6)502-512.

Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985;24(2-3):119-124.

Brasil. Ministério da Saúde, Agência Nacional de Vigilância Sanitária. Resolução da diretoria colegiada - RDC Nº 35, de 7 de agosto de 2015 [Internet]. Brasília (DF): Ministério da Saúde, 2015. Available at: https://bvsms.saude.gov.br/bvs/ saudelegis/anvisa/2015/rdc0035_07_08_2015.pdf

» https://bvsms.saude.gov.br/bvs/ saudelegis/anvisa/2015/rdc0035_07_08_2015.pdf

Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther. 2018;3:18.

Citrome L, Macher J-P, Salazar DE, Mallikaarjun S, Boulton DW. Pharmacokinetics of aripiprazole and concomitant carbamazepine. J Clin Psychopharmacol. 2007;27(3):279-283.

De Faria PA, Bettanin F, Cunha RLOR, Paredes-Gamero EJ, Homem-De-Mello P, Nantes IL, et al. Cytotoxicity of phenothiazine derivatives associated with mitochondrial dysfunction: A structure-activity investigation. Toxicology. 2015;330:44-54.

Dwyer DS, Lu X-H, Bradley RJ. Cytotoxicity of conventional and atypical antipsychotic drugs in relation to glucose metabolism. Brain Res. 2003;971(1):31-39.

Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007;35(4):495-516.

Elmorsy E, Al-Ghafari A, Aggour AM, Khan R, Amer S. The role of oxidative stress in antipsychotics induced ovarian toxicity. Toxicol In Vitro. 2017;44:190-195.

Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett . 2006;160(2):171-177.

Gajski G, Gerić M, Garaj-Vrhovac V. Evaluation of the in vitro cytogenotoxicity profile of antipsychotic drug haloperidol using human peripheral blood lymphocytes. Environ Toxicol Pharmacol. 2014;38(1):316-324.

Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007;32(1):37-43.

Heiser P, Enning F, Krieg J-C, Vedder H. Effects of haloperidol, clozapine, and olanzapine on the survival of human neuronal and immune cells in vitro. J Psychopharmacol. 2007;21(8):851-856.

Heiser P, Sommer O, Schmidt AJ, Clement HW, Hoinkes A, Hopt UT, et al. Effects of antipsychotics and vitamin C on the formation of reactive oxygen species. J Psychopharmacol . 2010;24(10):1499-1504.

Hilal-Dandan R, Knollmann B, Brunton L. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 13th ed. New York: McGraw-Hill Education; 2017. 1440 p.

Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell Death. N Engl J Med. 2009;361(16):1570-1583.

Jan R, Chaudhry G-e-S. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull. 2019;9(2):205-218.

Kawai C, Pessoto FS, Rodrigues T, Mugnol KCU, Tórtora V, Castro L, et al. pH-sensitive binding of cytochrome c to the inner mitochondrial membrane: Implications for the participation of the protein in cell respiration and apoptosis. Biochemistry. 2009;48(35):8335-8342.

Mas S, Gassó P, Trias G, Bernardo M, Lafuente A. Sulforaphane protects SK-N-SH cells against antipsychotic-induced oxidative stress. Fundam Clin Pharmacol. 2012;26(6):712-721.

McGrath J, Saha S, Chant D, Welham J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67-76.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63.

OECD. Guideline for Testing of Chemicals, 2004. Available at: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecdtg432-508.pdf

» https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecdtg432-508.pdf

Park SW, Lee JG, Ha EK, Choi SM, Cho HY, Seo MK, et al. Differential effects of aripiprazole and haloperidol on BDNF-mediated signal changes in SH-SY5Y cells. Eur Neuropsychopharmacol. 2009;19(5):356-362.

Post A, Holsboer F, Behl C. Induction of NF-κB activity during haloperidol-induced oxidative toxicity in clonal hippocampal cells: Suppression of NF-κB and neuroprotection by antioxidants. J Neurosci. 1998;18(20):8236-8246.

Qing H, Xu H, Wei Z, Gibson K, Li X-M. The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur J Neurosci . 2003;17(8):1563-1570.

Quincozes-Santos A, Bobermin LD, Tonial RPL, Bambini-Junior V, Riesgo R, Gottfried C. Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions. Eur Arch Psychiatry Clin Neurosci. 2010;260(6):475-481.

Raudenska M, Gumulec J, Babula P, Stracina T, Sztalmachova M, Polanska H, et al. Haloperidol cytotoxicity and its relation to oxidative stress. Mini Rev Med Chem. 2013;13(14):1993-1998.

Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3:1125-1131.

Ritter JM, Flower R, Henderson G, Loke YK, MacEwan D, Rang H. Rang & Dale’s Pharmacology. 9th ed. Amsterdam: Elsevier; 2018. 808 p.

Stahl SM. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. 4th ed. Cambridge: Cambridge University; 2013. 626 p.

Sudo RT, Calasans-Maia SL, Galdino SL, Lima MCA, Zapata-Sudo G, Hernandes MZ, et al. Interaction of Morphine With a New α2-Adrenoceptor Agonist in Mice. J Pain. 2010;11(1):71-78.

Tan QR, Wang XZ, Wang CY, Liu XJ, Chen YC, Wang HH, et al. Differential effects of classical and atypical antipsychotic drugs on rotenone-induced neurotoxicity in PC12 cells. Eur Neuropsychopharmacol . 2007;17(12):768-773.

Todaro GJ, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963;17(2):299-313.

Wei Z, Bai O, Richardson S, Mousseau DD, Li X-M. Olanzapine protects PC12 cells from oxidative stress induced by hydrogen peroxide. J Neurosci Res. 2003;73(3):364-368.

Yin Y-C, Lin C-C, Chen T-T, Chen J-Y, Tsai H-J, Wang C-Y, et al. Clozapine induces autophagic cell death in non-small cell lung cancer cells. Cell Physiol Biochem. 2015;35(3):945-956.

Zeni O, Salvemini F, Di Pietro R, Buonincontri D, Komulainen H, Romanò M, et al. Induction of oxidative stress in murine cell lines by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Toxicol Lett . 2004;147(1):79-85.

Zou J, Zhang Y, Sun J, Wang X, Tu H, Geng S, et al. Deoxyelephantopin induces reactive oxygen species-mediated apoptosis and autophagy in human osteosarcoma cells. Cell Physiol Biochem . 2017;42(5):1812-1821.

Downloads

Published

2023-05-08

Issue

Section

Original Article

How to Cite

Cytotoxicity evaluation of haloperidol, clozapine and a new molecule with antipsychotic potential, PT-31, in NIH-3T3 cells. (2023). Brazilian Journal of Pharmaceutical Sciences, 59, e21738. https://doi.org/10.1590/s2175-97902023e21738