Action of Bromelain and Ficin on horse anti Bothrops sp venom Antibodies
DOI:
https://doi.org/10.1590/s2175-97902022e20867Palavras-chave:
Bromelain, Ficin, Enzyme, F(ab)’2 fragments, Hyperimmune serumResumo
The treatment with hyperimmune sera constitute the only specific and effective therapy available against snakebite envenomation, most common in developing countries. Serum quality is an important factor on patient recovery time and in the incidence of death and permanent disability. To date, most sera consist of pepsin digested IgG antibodies harvested from hyperimmune animals. The use of animal derived enzymes, such as pepsin, to digest IgG, constitute a source of adventitious agents and contaminants, such as porcine circovirus. The present study aims to evaluate the use of the plant derived enzymes bromelain and ficin, as an alternative to pepsin. To this purpose, horse serum immunized against Bothrops venoms was purified with caprylic acid and digested with bromelain or ficin. SDS-PAGE results evidence the formation of F(ab)’2 fragments and suggest that a digestion time superior to 8 hours may be required to completely digest the antibodies with bromelain or ficin. F(ab)’2 fragments obtained by digestion with either bromelain or ficin digestion preserved the ability to recognize Bothrops sp. venom in western blotting assays. Therefore, both enzymes are suitable for use in large-scale production, minimizing contamination risks and increasing safety and efficiency of serotherapy treatments.
Downloads
Referências
Altun GD, Cetinus SA. Immobilization of pepsin on chitosan beads. Food Chem. 2007;100(3):964-71. Doi: 10.1016/j.foodchem.2005.11.005.
» https://doi.org/10.1016/j.foodchem.2005.11.005
Boyer L, Degan J, Ruha AM, Mallie J, Mangin E, Alagon A. Safety of intravenous equine F(ab)’2: insights following clinical trials involving 1534 recipients of scorpion antivenom. Toxicon. 2013;76:386-93. Doi: 10.1016/j.toxicon.2013.07.017.
» https://doi.org/10.1016/j.toxicon.2013.07.017
Brasil. Ministério da Saúde. Acidentes por animais peçonhentos - Serpentes: Ministério da Saúde; 2017 [cited 2020 06/19]. Available from: Available from: https://www.saude.gov.br/saude-de-a-z/acidentes-por-animais-peconhentos-serpentes
» https://www.saude.gov.br/saude-de-a-z/acidentes-por-animais-peconhentos-serpentes
Brasil. Ministério da Saúde. Série Histórica 1986-2018 de casos de acidentes por animais peçonhentos.: Ministerio da Saúde; 2019 [cited 2020 May 24]. Available from: Available from: https://www.saude.gov.br/images/pdf/2019/outubro/16/1--Dados-Epidemiologicos-SiteSVS--Setembro-2019-ANIMAIS-PE--ONHENTOS-S--RIE-HIST--RICA.pdf
Burnouf T, Griffiths E, Padilla A, Seddik S, Stephano MA, Gutierrez JM. Assessment of the viral safety of antivenoms fractionated from equine plasma. Biologicals. 2004;32(3):115-28. Doi: 10.1016/j.biologicals.2004.07.001.
» https://doi.org/10.1016/j.biologicals.2004.07.001
Chippaux JP, Massougbodji A, Stock RP, Alagon A. Investigators of African Antivipmyn in B. Clinical trial of an F(ab)’2 polyvalent equine antivenom for African snake bites in Benin. Am J Trop Med Hyg. 2007;77(3):538-46. Doi: 10.4269/ajtmh.2007.77.538.
» https://doi.org/10.4269/ajtmh.2007.77.538
dos Santos MC, D’Imperio Lima MR, Furtado GC, Colletto GM, Kipnis TL, Dias da Silva W. Purification of F(ab)’2 anti-snake venom by caprylic acid: a fast method for obtaining IgG fragments with high neutralization activity, purity and yield. Toxicon . 1989;27(3):297-303. Doi: 10.1016/0041-0101(89)90177-3.
» https://doi.org/10.1016/0041-0101(89)90177-3
Gilliland SM, Forrest L, Carre H, Jenkins A, Berry N, Martin J, et al. Investigation of porcine circovirus contamination in human vaccines. Biologicals . 2012;40(4):270-7. Doi: 10.1016/j.biologicals.2012.02.002.
» https://doi.org/10.1016/j.biologicals.2012.02.002
Gutierrez JM. Global Availability of Antivenoms: The Relevance of Public Manufacturing Laboratories. Toxins (Basel). 2018;11(1). Doi: 10.3390/toxins11010005.
» https://doi.org/10.3390/toxins11010005
Jones RG, Landon J. Enhanced pepsin digestion: a novel process for purifying antibody F(ab’)(2) fragments in high yield from serum. J Immunol Methods. 2002;263(1-2):57-74. Doi: 10.1016/s0022-1759(02)00031-5.
» https://doi.org/10.1016/s0022-1759(02)00031-5
Kordzangene A, Mohebat R, Mosslemin M, Moghadam AT. Improvement of purification methods for F(ab´)2 fraction of equine hyperimmune plasma against scorpion venom. Biomedical Research. 2018;29(10):1968-73. Doi: 10.4066/biomedicalresearch.29-17-986.
» https://doi.org/10.4066/biomedicalresearch.29-17-986
Lamoyi E, Nisonoff A. Preparation of F(ab)’2 fragments from mouse IgG of various subclasses. J Immunol Methods . 1983;56(2):235-43. Doi: 10.1016/0022-1759(83)90415-5.
» https://doi.org/10.1016/0022-1759(83)90415-5
Mariani M, Camagna M, Tarditi L, Seccamani E. A new enzymatic method to obtain high-yield F(ab)2 suitable for clinical use from mouse IgGl. Mol Immunol. 1991;28(1-2):69-77. Doi: 10.1016/0161-5890(91)90088-2.
» https://doi.org/10.1016/0161-5890(91)90088-2
Mathew P, Amudhan CRT, Mathai P, Philip RM, Kumar S, Plackal JJ, et al. Maxillofacial Trauma and Snake Bite - Incidence in Coincidence. J Adv Med and Dental Sci Res. 2020;8(1):121-4.
Milenic DE, Esteban JM, Colcher D. Comparison of methods for the generation of immunoreactive fragments of a monoclonal antibody (B72.3) reactive with human carcinomas. J Immunol Methods . 1989;120(1):71-83. Doi: 10.1016/0022-1759(89)90291-3.
» https://doi.org/10.1016/0022-1759(89)90291-3
Petricciani J, Sheets R, Griffiths E, Knezevic I. Adventitious agents in viral vaccines: lessons learned from 4 case studies. Biologicals . 2014;42(5):223-36. Doi: 10.1016/j. biologicals.2014.07.003.
» https://doi.org/10.1016/j. biologicals.2014.07.003
Pucca MB, Cerni FA, Janke R, Bermudez-Mendez E, Ledsgaard L, Barbosa JE, et al. History of Envenoming Therapy and Current Perspectives. Front Immunol. 2019;10:1598. Doi: 10.3389/fimmu.2019.01598.
» https://doi.org/10.3389/fimmu.2019.01598
Schaeffer TH, Khatri V, Reifler LM, Lavonas EJ. Incidence of immediate hypersensitivity reaction and serum sickness following administration of Crotalidae polyvalent immune Fab antivenom: a meta-analysis. Acad Emerg Med. 2012;19(2):121-31. Doi: 10.1111/j.1553-2712.2011.01276.x.
» https://doi.org/10.1111/j.1553-2712.2011.01276.x
Silva de Oliveira S, Campos Alves E, Dos Santos Santos A, Freitas Nascimento E, Tavares Pereira JP, Mendonca da Silva I, et al. Bothrops snakebites in the Amazon: recovery from hemostatic disorders after Brazilian antivenom therapy. Clin Toxicol (Phila). 2020;58(4):266-74. Doi: 10.1080/15563650.2019.1634273.
» https://doi.org/10.1080/15563650.2019.1634273
Squaiella-Baptistao CC, Sant’Anna OA, Marcelino JR, Tambourgi DV. The history of antivenoms development: Beyond Calmette and Vital Brazil. Toxicon . 2018;150:86-95. Doi: 10.1016/j.toxicon.2018.05.008.
» https://doi.org/10.1016/j.toxicon.2018.05.008
Taherian A, Fazilati M, Moghadam AT, Tebyanian H. Optimization of purification procedure for horse F(ab´)2 Action of Bromelain and Ficin on horse anti Bothrops sp venom Antibodies antivenom against Androctonus crassicauda (Scorpion) venom. Trop J Pharm Res. 2018;17(3):409-14. Doi: 10.4314/ tjpr.v17i3.4.
» https://doi.org/10.4314/ tjpr.v17i3.4
WHO Expert Committee on Biological Standardization. World Health Organ Tech Rep Ser. 2016(999):1-267.
WHO. Snakebite: WHO targets 50% reduction in deaths and disabilities Geneva: World Health Organization; 2019 [cited 2020 19/06]. Available from: Available from: https://www.who.int/news-room/detail/06-05-2019-snakebite-who-targets-50-reduction-in-deaths-and-disabilities
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Brazilian Journal of Pharmaceutical Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.