Ligustrazine suppresses platelet aggregation through inhibiting the activities of calcium sensors
DOI:
https://doi.org/10.1590/s2175-97902022e20101%20Keywords:
Ca2 release-activated Ca2 channel, Intracellular calcium concentration, Orai1, Platelet activation, Stromal interaction molecule l (STIM1), Serum/glucocorticoid-regulated protein kinase 1 (SGK1)Abstract
Ligustrazine is widely used for the treatment of cardiovascular diseases in traditional Chinese medication. It has been reported that Ligustrazine decreases the concentration of intracellular calcium ions (Ca2+); however, the underlying mechanism remains unknown. In the present study, the effect of Ligustrazine on adenosine diphosphate (ADP)-induced platelet aggregation was evaluated using a turbidimetric approach. The changes in concentration of intracellular Ca2+ stimulated by ADP was measured using fluo-4, a fluorescent Ca2+ indicator dye. The mRNA expression of stromal interaction molecule l (STIM1) and Orai1, calcium sensor, was determined using real-time PCR. In addition, the protein expression of STIM1, Orai1, and serum/glucocorticoid-regulated protein kinase 1 (SGK1) was determined using Western blot analysis. The data demonstrated that Ligustrazine significantly suppressed platelet aggregation in a dose-dependent manner and reduced the concentration of intracellular Ca2+ triggered by ADP. Our data showed that Ligustrazine treatment inhibited the expression of STIM1 and Orai1 induced by ADP at both mRNA and protein levels, and suppressed the protein expression of SGK1. Taken together, our data indicated that Ligustrazine suppressed platelet aggregation by partly inhibiting the activities of calcium sensors, thereby suggesting that Ligustrazine may be a promising candidate for the treatment of platelet aggregation.
Downloads
References
Barendrecht AD, Verhoef JJF, Pignatelli S, Pasterkamp G, Heijnen HFG, Maas C. Live-cell imaging of platelet degranulation and secretion under flow. J Vis Exp. 2017;(125):1-11.
Barrett TJ, Schlegel M, Zhou F, Gorenchtein M, Jeffrey SJ. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med. 2019;11(517):1-14.
Berna-Erro A, Jardin I, Smani T, Rosado JA. Regulation of platelet function by Orai, STIM and TRP. Adv Exp Med Biol. 2016;898:157-181.
Borst O, Schmidt EM, Munzer P, Schonberger T, Towhid ST, Elvers M, et al. The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood. 2012;119(1):251-261.
Bodnar D, Chung WY, Yang D, Hong JH, Shmuel M. STIM-TRP pathways and microdomain organization: Ca2+ influx channels: the Orai-STIM1-TRPC complexes. Store-Operated Ca²+ Entry (SOCE) Pathways. In: Adv Exp Med Biol . 2017;993:139-157.
Chen H, Li G, Zhan P, Liu X. Ligustrazine derivatives. Part 5: design, synthesis and biological evaluation of novel ligustrazinyloxy-cinnamic acid derivatives as potent cardiovascular agents. Eur J Med Chem. 2011;46(11):5609-5615.
Davlouros P, Xanthopoulou I, Mparampoutis N, Giannopoulos G, Deftereos S, Alexopoulos D. Role of Calcium in Platelet Activation: Novel Insights and Pharmacological Implications. Med Chem. 2016;12(2):131-138.
Derler I, Romanin C. Natural photoswitches expose STIM1 activation steps. Cell Calcium. 2020;90:102240,1-3.
Dolan AT, Diamond SL. Systems modeling of Ca(2+) homeostasis and mobilization in platelets mediated by IP3 and store-operated Ca(2+) entry. Biophys J. 2014;106(9):2049-2060.
Dong L, Liu XX, Wu SX, Mei Y, Liao SG. Rhizoma Bletillae polysaccharide elicits hemostatic effects in platelet-rich plasma by activating adenosine diphosphate receptor signaling pathway. Biomed Pharmacother. 2020;130:110537.
Dudzinska, Dominika, Bednarska, Katarzyna, Boncler, Magdalena, et al. The influence of Rubus idaeus and Rubus caesius leaf extracts on platelet aggregation in whole blood. Cross-talk of platelets and neutrophils. Platelets. 2016;27(5):433-439.
Frischauf I, Fahrner M, Jardin I, Romanin C. The STIM1: Orai interaction. Adv Exp Med Biol . 2016;898:25-46.
Geue S, Walker AB, Eißler D, Tegtmeyer R, Schaub M, Lang F, et al. Doxepin inhibits GPVI-dependent platelet Ca signaling and collagen-dependent thrombus formation. Am J Physiol Cell Physiol. 2017;312(6):C765-C774.
Guo M, Liu Y, Shi D. Cardiovascular actions and therapeutic potential of tetramethylpyrazine (Active component isolated from Rhizoma Chuanxiong): Roles and mechanisms. BioMed Res Int. 2016;2016:2430329.
Huang TY, Lin YH, Chang HA, Yeh TY, Chang YH, Chen YF, et al. STIM1 knockout enhances PDGF-mediated Ca signaling through upregulation of the PDGFR-PLCγ- STIM2 cascade. Int J Mol Sci. 2018;19(6):1799-1815.
Jin Y, Cai S, Jiang Y, Zhong K, Wen C, Ruan Y, et al. Tetramethylpyrazine reduces epileptogenesis progression in electrical kindling models by modulating hippocampal excitatory neurotransmission. ACS Chem Neurosci. 2019;10(12):4854-4863.
Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/ STIM1 by the kinases SGK1 and AMPK. Cell calcium. 2012;52(5):347-354.
Lang F, Munzer P, Gawaz M, Borst O. Regulation of STIM1/ Orai1-dependent Ca2+ signalling in platelets. Thromb Haemostasis. 2013;110(3):925-930.
Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schails L. To die or not to die sgk1-sensitive ORAI/STIM in cell survival. Cell Calcium . 2018;74:29-34.
Li L, Chen HW, Shen A, Li QY, Chen KJ. Ligustrazine inhibits platelet activation via suppression of the Akt pathway. Int J Mol Med. 2018;43(1):575-582.
Lopez JJ, Salido GM, Rosado JA. Cardiovascular and hemostatic disorders: SOCE and Ca2+ handling in platelet dysfunction. Store-Operated Ca²+ Entry (SOCE) Pathways. In: Adv Exp Med Biol . 2017;993:453-472.
Mills EW, Green R, Ingolia NT. Slowed decay of mRNAs enhances platelet specific translation. Blood . 2017;129(17):e38-e48.
Noy PJ, Gavin RL, Colombo D, Elizabeth JH, Jasmeet SR, Holly P, Ina T, et al. Tspan18 is a novel regulator of the Ca channel Orai1 and von Willebrand factor release in endothelial cells. Haematologica. 2018;104(9):1892-1905.
Qian W, Xiong X, Fang Z, Lu H, Wang Z. (2014). Protective effect of tetramethylpyrazine on myocardial ischemia-reperfusion injury. Evid Based Complement Alternat Med. 2014:2014;107501,1-9.
Russo I, Penna C, Musso T, Popara J, Alloatti G, Cavalot F, et al. Platelets, diabetes and myocardial ischemia/reperfusion injury. Cardiovasc Diabetol. 2017;16(1):71.
Schieber R, Lasserre F, Hans M, Fernandez YM, Diaz-Ricart M, Escolar G, et al. Direct laser interference patterning of CoCr alloy surfaces to control endothelial cell and platelet response for cardiovascular applications. Adv Healthcare Mater. 2017;6(19):1-14.
Signarvic RS, Cierniewska A, Stalker TJ, Karen FP, Lawrence BF. RGS/Gi2alpha interactions modulate platelet accumulation and thrombus formation at sites of vascular injury. Blood . 2010;116(26):6092-6100.
Vaeth M, Kahlfuss S, Feske S. CRAC channels and calcium signaling in T cell-mediated immunity. Trends in Immunol. 2020;41(10):878-901.
Volz J, Kusch C, Beck S, Popp M, Nieswandt B. BIN2 orchestrates platelet calcium signaling in thrombosis and thrombo-inflammation. The Journal of clinical investigation. 2020;130(11):6064-6079.
Wang Y, Zhu H, Tong J, Li Z. Ligustrazine improves blood circulation by suppressing platelet activation in a rat model of allergic asthma. Environ Toxicol Pharmacol. 2016;45:334-339.
Wu H. Calcium signal in platelet activation. Prog Physiol. 2012;43(006):417-421.
Wu N, Yang Y, Yu N, Wu Y, Han X, Chen S, et al. Tetramethylpyrazine downregulates transcription of the CXC receptor4 (CXCR4) via nuclear respiratory factor-1 (Nrf-1) in WERI-Rb1 retinoblastoma cells. Oncol Rep. 2019;42(3):1214-1224.
Yen MH, Kan YC, Hung WC, Ko WC, Sheu JR. Mechanisms involved in the antiplatelet activity of tetramethylpyrazine in human platelets. Thromb Res. 1997;88(3):259-270.
Zhao Y, Liu Y, Chen K. Mechanisms and clinical application of tetramethylpyrazine (an interesting natural compound isolated from Ligusticum Wallichii): Current status and perspective. Oxid Med Cell Longevity. 2016;2016:1-9.
Zhang H, Chang Z, Mehmood K, Yang MK, Guo R. Tetramethylpyrazine inhibited hypoxia-induced expression of calcium-sensing receptors in pulmonary artery smooth muscle cells in chickens. J Biol Regul Homeostatic Agents. 2018;32(3):489-495.
Zhu JX, Zhang GH, Yang N, Connie WHY, Chung YW, Chan HC. Involvement of intracellular and extracellular Ca2+ in tetramethylpyrazine-induced colonic anion secretion. Cell Biol Int. 2006;30(6):547-552.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Pharmaceutical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.
How to Cite
Funding data
-
National Natural Science Foundation of China
Grant numbers 81072968 and 81473453 -
Henan University of Chinese Medicine