Gold nanoparticles as a promising treatment for diabetes and its complications

Current and future potentials

Authors

  • Ghada Alomari Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 2 Department of Biological Sciences, Yarmouk University, Irbid, Jordan https://orcid.org/0000-0003-1210-124X
  • Salehhuddin Hamdan Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru,
  • Bahaa Al-Trad Department of Biological Sciences, Yarmouk University, Irbid, Jordan

DOI:

https://doi.org/10.1590/s2175-97902020000419040

Keywords:

Gold nanoparticles; Therapeutic effects; Diabetes; Diabetic complications; Pathogenesis determinants

Abstract

Diabetes and its complications represent a major cause of morbidity and mortality in diabetes patients. This review is aimed to find the potential of gold nanoparticles (AuNPs) to act as therapeutic agents for diabetes and its complications. Here, we outline the literature related to the self-therapeutic effects of AuNPs. The first goal of this review is to highlight and summarize some of the existing studies (10 years ago) in terms of several parameters such as the size of AuNPs, dose, administration route, experimental model, experimental analysis, and findings. The second goal is to describe the self-therapeutic effects of AuNPs against the pathogenesis determinants of diabetic complications. AuNPs have been found to have inhibitory effects on transforming growth factor-β, antiglycation, antiangiogenic, anti-hyperglycemic, anti-inflammatory, and antioxidant effects. AuNPs treatment effectively disrupts multiple pathogenesis determinants in an animal model of diabetes and diabetic complications. The present review provides insight into the potential applications of AuNPs, which may help reduce the incidence of diabetes and its complications.

Downloads

Download data is not yet available.

References

Afifi M, Abdelazim A.M. Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant system in the brain of diabetic rats. Asian Pac J Trop Biomed. 2015;5(10):874-877.

Ali M, Anuradha V, Abishek R., Yogananth N, Sheeba, H. In vitro anticancer activity of green synthesis ruthenium nanoparticle from dictyota dichotoma marine algae. NanoWorld J. 2017;3(4):66-71.

Alkilany, AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res. 2010;12(7):2313-2333.

Almeida JPM, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine. 2011;6(5):815-835.

Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv cardiol. Karger Publishers. 2008;45:1-16.

Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello V.M. and Mukherjee, P., Mechanism of anti-angiogenic property of gold nanoparticles: Role of nanoparticle size and surface charge. Nanomed-Nanotechnol. 2011;7(5):580-587.

Arvizo RR, Saha S, Wang E, Robertson JD, Bhattacharya R, Mukherjee P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. PNAS. 2013;110(17):6700-6705.

Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on ages formation using biophysical techniques. Sci Rep. 2016;6:20414.

Aziz F, Ihsan A, Nazir A, Ahmad I, Bajwa SZ, Rehman A et al.. Novel route synthesis of porous and solid gold nanoparticles for investigating their comparative performance as contrast agent in computed tomography scan and effect on liver and kidney function. Int J Nanomed. 2017;12:1555-1563.

Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice J Nanotechnobiol. 2010;8(1):16.

Bednarski M, Dudek M, Knutelska J, Nowiński L, Sapa J, Zygmun M. et al. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: In vivo studies. Pharmacol Rep. 2015;67(3):405-409.

Bhattacharya R, Mukherjee P, Xiong Z, Atala A, Soker S, Mukhopadhyay D. Gold nanoparticles inhibit vegf165-induced proliferation of huvec cells. Nano Lett. 2004;4(12):2479-2481.

Bodelón G, Costas C, Pérez-Juste J, Pastoriza-Santos I, LizMarzán LM. Gold nanoparticles for regulation of cell function and behavior. Nano Today. 2017;13,40-60.

Border WA, Noble NA. Evidence that tgf-β should be a therapeutic target in diabetic nephropathy. Kidney Int. 1998;54(4):1390-1391.

Brede C, Labhasetwar V. Applications of nanoparticles in the detection and treatment of kidney diseases. Adv. Chronic Kidney Dis. 2013;20(6):454-465.

Campos EJ, Campos A, Martins, J, Ambrósio AF. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomed-Nanotechnol. 2017;13(6):2101-2113.

Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM. In vivo study of spherical gold nanoparticles: Inflammatory effects and distribution in mice. PLoS One. 2013;8(2):e58208.

Chen S-A, Chen H-M, Yao Y-D, Hung C-F, Tu C-S, Liang Y-J. Topical treatment with anti-oxidants and au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur J Pharm Sci. 2012;47(5):875-883.

Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-β: Transforming our view of glomerulosclerosis and fibrosis build-up. Semin. Nephrol. Elsevier. 2003. p 532-543.

Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: Potential role in renal fibrosis. Nephrology Dialysis Transplantation. 2004;19(12):2987-2996.

Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325-327.

Daisy P, Saipriya K. Biochemical analysis of cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed. 2012;7:1189-1202.

Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. Journal of diabetes research. 2015;2015:948417.

Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocr Metab. 2009;94(6):2157-2163.

Edrees HM, Elbehiry A, Elmosaad YM. Hypoglycemic and anti-inflammatory effect of gold nanoparticles in streptozotocin-induced type 1 diabetes in experimental rats. Int. J. Diabetes Res. 2017;6(1):16-23.

Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: The oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008;9(4):301-314.

Gonçalves NP, Vægter CB, Pallesen LT. Peripheral glial cells in the development of diabetic neuropathy. Front Neurol. 2018;9:268.

Hamza A, Bashuaib H. Anti-diabetic and anti-fibrotic effects of gold and silver nano-particles on diabetic nephropathy induced experimentally. Bioscience Research. 2018;15(1):215228.

Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed-Nanotechnol. 2015;11(7):16031611.

Kalishwaralal K, Sheikpranbabu S, BarathManiKanth S, Haribalaganesh R, Ramkumarpandian S, Gurunathan S. Retracted article: Gold nanoparticles inhibit vascular endothelial growth factor-induced angiogenesis and vascular permeability via src dependent pathway in retinal endothelial cells. Angiogenesis. 2011;14(1):29-45.

Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, et al. Diabetic nephropathy: Mechanisms of renal disease progression. Exp Biol Med. 2008;233(1):4-11.

Karthick V, Kumar VG, Dhas TS, Singaravelu G, Sadiq AM, Govindaraju K, Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats—an in vivo approach. Colloid Surface B. 2014;122:505-511.

Kashihara N, Haruna Y, K Kondeti V, S Kanwar Y. Oxidative stress in diabetic nephropathy. Curr. Med. Chem. 2010;17(34):4256-4269.

Khan HA, Abdelhalim MAK, Al-Ayed MS, Alhomida AS. Effect of gold nanoparticles on glutathione and malondialdehyde levels in liver, lung and heart of rats. Saudi J. Biol. Sci. 2012;19(4):461-464.

Khan, J.A., Pillai, B., Das, T.K., Singh, Y. and Maiti, S., Molecular effects of uptake of gold nanoparticles in hela cells. Chembiochem. 2007;8(11):1237-1240.

Kim J-H, Hong C-O, Koo Y-C, Choi H-D, Lee K-W. Antiglycation effect of gold nanoparticles on collagen. Biol Pharm Bull. 2012;35(2):260-264.

Kim JH, Kim JH, Kim K-W, Kim MH, Yu YS. Intravenously administered gold nanoparticles pass through the blood- retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology. 2009;20(50):505101.

Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of vegfr-2 activation. Biomaterials. 2011;32(7):1865-1871.

King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79(8S):1527-1534.

Kumar GS, Kulkarni A, Khurana A, Kaur J, Tikoo K. Selenium nanoparticles involve hsp-70 and sirt1 in preventing the progression of type 1 diabetic nephropathy. Chem Biol Interact. 2014;223:125-133.

Kumar Pasupulati A, Chitra PS, Reddy GB. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy, BioMol Concepts. 2016;7(5-6):293-309.

Lim AK, Tesch GH. Inflammation in diabetic nephropathy. Mediators Inflamm. 2012;2012:ID146154, 12p.

Lim Z-ZJ, Li J-EJ, Ng, C-T, Yung, L-YL, Bay B-H. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011;32(8):983-990.

Liu W, Cohenford MA, Frost L, Seneviratne C, Dain JA. Inhibitory effect of gold nanoparticles on the d-ribose glycation of bovine serum albumin. Int J Nanomed. 2014;9(1):5461-5469.

Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomed-Nanotechnol. 2018;14(1):1-12.

Mateo D, Morales P, Ávalos A, Haza AI. Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. J Exp Nanosci. 2015;10(18): 1401-1417.

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5-18.

Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, de Abreu Brandolfi J, et al. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of alzheimer’s type. Mater Sci Eng C Mater Biol Appl. 2017;77:476-483.

Nakagawa T, Kosugi T, Haneda M, Rivard CJ, Long DA. Abnormal angiogenesis in diabetic nephropathy. Diabetes. 2009;58(7):1471-1478.

Opris R, Tatomir C, Olteanu D, Moldovan R, Moldovan B, David L et al. The effect of sambucus nigra l. Extract and phytosinthesized gold nanoparticles on diabetic rats. Colloid Surface B. 2017; 150:192-200.

Paula M, Petronilho F, Vuolo F, Ferreira GK, De Costa L, Santos GP et al. Gold nanoparticles and/or N-acetylcysteine mediate carrageenan-induced inflammation and oxidative stress in a concentration-dependent manner. J Biomed Mater Res A. 2015;103(10):3323-3330.

Pereira DV, Vuolo F, Galant L, Constantino L, Neto VP, Pocrifka L, et al. Effects of gold nanoparticles on vascular endothelial growth factor and its receptor in an animal model of uveitis in rats [version 1, 2 approved with reservations]. Curr Updates Nanotechnol. 2017;1(2.1).

Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med. 2015;6(3):120-127.

Quattrini C, Jeziorska M, Boulton AJM, Malik RA. Reduced vascular endothelial growth factor expression and intraepidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 2008;31(1):140-145.

Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59(7):365-373.

Saha S, Xiong X, Chakraborty PK, Shameer K, Arvizo RR, Kudgus RA, et al. Gold nanoparticle reprograms pancreatic tumor microenvironment and inhibits tumor growth. ACS Nano. 2016;10(12):10636-10651.

Selim ME, Abd-Elhakim YM, Al-Ayadhi LY. Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model. Cell. Physiol. Biochem. 2015;35(2):586-600.

Seneviratne C, Narayanan R, Liu W, Dain JA. The in vitro inhibition effect of 2 nm gold nanoparticles on non-enzymatic glycation of human serum albumin. Biochem Biophys Res Commun. 2012;422(3):447-454.

Shah M, Badwaik VD, Dakshinamurthy R. Biological applications of gold nanoparticles. J Nanosci Nanotechno. 2014;14(1):344-362.

Shaheen TI, El-Naggar ME, Hussein JS, El-Bana M, Emara E, El-Khayat Z. et al. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed Pharmacother. 2016;83:865-875.

Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288(20):2579-2588.

Shen N, Zhang R, Zhang H-R, Luo H-Y, Shen W, Gao X, et al. Inhibition of retinal angiogenesis by gold nanoparticles via inducing autophagy. Int J Ophthalmol-Chi. 2018;11(8):12691276.

Si S, Pal A, Mohanta J, Satapathy SS. Gold nanostructure materials in diabetes management, J Phys D Appl Phys. 2017;50(13):134003.

Siddiqi NJ, Abdelhalim MAK, AlYafee YA, Alhomida AS. Studies on the effect of gold nanoparticles on oxidative stress and antioxidants defense indices in various rat tissues. Afr J Pharm Pharmacol. 2012;6(47):3246-3251.

Singha S, Bhattacharya J, Datta H, Dasgupta AK. Antiglycation activity of gold nanoparticles. NanomedNanotechnol. 2009;5(1):21-29.

Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: A theranostic potential for ppp cardiology. EPMA J. 2013;4(1):20.

Sumbayev VV, Yasinska IM, Garcia CP, Gilliland D, Lall GS, Gibbs BF, et al. Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small. 2013;9(3):472-477.

Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343-358.

Venkatachalam M, Govindaraju K, Sadiq AM, Tamilselvan S, Kumar VG, Singaravelu G. Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim Acta. A Mol Biomol Spectrosc. 2013;116:331-338.

Williams, RM, Shah J, Tian HS, Chen X. Geissmann F, Jaimes EA, et al. Selective nanoparticle targeting of the renal tubules. Hypertension. 2018;71(1):87-94.

Xia QY, Li, HX, Xiao K. Factors affecting the pharmacokinetics, biodistribution and toxicity of gold nanoparticles in drug delivery. Curr Drug Metab. 2016;17(9):849-861.

Xu M-X, Wang M, Yang W-W. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating tlr4/nf-κb signaling and nrf2 pathway in high fat diet fed mice. Int J Nanomed. 2017;12:327-345.

Zent R, Pozzi A. Angiogenesis in diabetic nephropathy. Semin Nephrol. 2007. p 161-171.

Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. J Toxicol Env Heal B. 2011;14(8):593-632.

Zhao X, Pan Y, Din H, Qin L, Shao M. The influence of gold nanoparticles on sil-2r and tgf-β of hepatocellular carcinoma bearing mice before and after the electric knife treatment. Nanomed-Nanotechnol. 2016;12(2):563-564.

Downloads

Published

2022-11-09

Issue

Section

Review

How to Cite

Gold nanoparticles as a promising treatment for diabetes and its complications: Current and future potentials. (2022). Brazilian Journal of Pharmaceutical Sciences, 57. https://doi.org/10.1590/s2175-97902020000419040