Rapid identification of microbial contaminants in pharmaceutical products using a PCA/ LDA-based FTIR-ATR method

Authors

  • Natália Monte Rubio de Brito Universidade de Sao Paulo - Faculdade de Ciencias Farmaceuticas - Departamento de Farmacia - FBF Sao Paulo, Sao Paulo Brazi
  • Felipe Rebello Lourenço https://orcid.org/0000-0002-2630-151X

DOI:

https://doi.org/10.1590/s2175-97902020000318899

Keywords:

Infrared spectrometry (IR). Principal components analysis (PCA). Linear discriminant analysis (LDA). Rapid microbiological methods (RMM). Microbial identification. Chemometric tools.

Abstract

Microbiological quality of pharmaceuticals is fundamental in ensuring efficacy and safety of medicines. Conventional methods for microbial identification in non-sterile drugs are widely used; however they can be time-consuming and laborious. The aim of this paper was to develop a chemometricbased rapid microbiological method (RMM) for identifying contaminants in pharmaceutical products using Fourier transform infrared with attenuated total reflectance spectrometry (FTIRATR). Principal components analysis (PCA) and linear discriminant analysis (LDA) were used to obtain a predictive model capable of distinguishing Bacillus subtilis (ATCC 6633), Candida albicans (ATCC 10231), Enterococcus faecium (ATCC 8459), Escherichia coli (ATCC 8739), Micrococcus luteus (ATCC 10240), Pseudomonas aeruginosa (ATCC 9027), Salmonella typhimurium (ATCC 14028), Staphylococcus aureus (ATCC 6538), and Staphylococcus epidermidis (ATCC 12228) microbial growth. FTIR-ATR spectra provide data on proteins, DNA/RNA, lipids, and carbohydrates constitution of microbial growth. Microbial identification provided by PCA/LDA based on FTIRATR method were compatible with those obtained using traditional microbiological methods. The chemometric-based FTIR-ATR method for rapid identification of microbial contaminants in pharmaceutical products was validated by assessing the sensitivity (93.5%), specificity (83.3%), and limit of detection (17-23 CFU/mL of sample). Therefore, we propose that FTIR-ATR spectroscopy may be used for rapid identification of microbial contaminants in pharmaceutical products and taking into account the samples studied.

Downloads

Download data is not yet available.

References

Agência Nacional de Vigilância Sanitária (ANVISA). 5.5.3.1 Ensaios microbiológicos para produtos não estéreis. Brasília: Farmacopeia Brasileira, 2010.

Bugno A, Lira RS, Oliveira WA, Almodovar AAB, Saes DPS, Pinto TJA. Application of the BacT/ALERT(r) 3D system for sterility testing of injectable products. Braz J Microbiol. 2015;46(3):743-7.

Bugno A, Saes DPS, Almodovar AAB, Dua K, Awasthi R, Ghisleni DDM, Hirota MT, Oliveira WA, Pinto TJA. Performance survey and comparison between rapid sterility testing method and pharmacopeia sterility test. J Pharm Innov. 2018;13(1):27-35.

David R, Maurer LJ. Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. In: Méndez-Vilas, editors. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz: Formatex, 2010. pp. 1582-94.

Denyer SP, Baird RM. Guide to microbiological control in pharmaceuticals and medical devices. 2nd ed. New York: Taylor & Francis Group, 2007.

Ester MC. Rapid microbiological methods in the pharmaceutical industry. Washington: Interpharm/CRC, 2003.

Ferreira MRS, Lourenço FR, Ohara MT, Bou-Chacra NA, Pinto TJA. Na innovative challenge test for solid cosmetics using freeze-dried microorganisms and electrical methods. J Microbiol Methods. 2014;104:104-9.

Filip Z, Herrmann S, Kubat J. FT-IR spectroscopic characteristics of differently cultivated Bacillus substilis. Microbiol Res. 2014:159(3):257-62.

Fischer G, Braun S, Thissen R, Dott W. FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods. 2006;64(1):63-77.

Helm D, Naumann D. Identification of some bacterial cell components by FT-IR spectroscopy. FEMS Microbiol Lett. 1995;126(1):75-9.

Hongyu, K., Sandanielo, V. L. M., Junior, G. J. O. Análise de Componentes Principais: resumo teórico, aplicação e interpretação. Eng Sci. 2015; 1(5): 1-8.

Kane SR, Létant SE, Murphy GA, Alfaro TM, Krauter PW, Mahnke R, Legler TC, Raber E. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. J Microbiol Methods. 2009;76(3):278-84.

Kuligowski J, Quintás G, Herwig C, Lendl B. A rapid method for the differentiation of yeast cells grown under carbon and nitrogen-limited conditions by means of partial least squares discriminant analysis employing infrared micro-spectroscopic data of entire yeast cells. Talanta. 2012;99:566-73.

Liu X, Guan Y, Cheng S, Huang Y, Yan Q, Zhang J, Huang G, Zheng J, Liu T. Development of a highly sensitive lateral immunochromatographic assay for rapid detection of Vibrio parahaemolyticus. J Microbiol Methods. 2016;131:78-84.

Lourenço FR, Francisco FL, Ferreira MRS, Pinto TJA, Löbenberg R, Bou-Chacra NA. Design space approach for preservative system optimization of an anti-aging eye fluid emulsion. J Pharm Pharm Sci. 2015;18(2):551-61.

Lourenço FR, Kaneko TM, Pinto TJA. Estimativa da incerteza em ensaio de detecção de endotoxina bacteriana pelo método de gelificação. Braz. J. Pharm. Sci. 2005;41(4):437-443.

Maurischat S, Szabo I, Baumann B, Malorny B. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SAMONELLA VAC E. J. Microbial Methods. 2015;112:92-8.

Pacheco FL, Pinto TJA, The bacterial diversity of pharmaceutical clean rooms analyzed by the fatty acid methyl ester technique. PDA J Pharm Sci Technol. 2010;64(2):156-66.

Paiva, A. P. D. Metodologia Superficie de Respostas e Análise de Componentes Principais em Otimização de Processo de Manufatura com Múltiplas Respostas Correlaciondas. Itajubá, 2006.

Parveen S Kaur S, Wilson SA, Kenney JL, McCornick WM, Gupta RK. Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products. Vaccine. 2011;29:8012-23.

Pinto TJA, Kaneko TM, Pinto AF. Métodos alternativos para enumeração e identificação de microrganismos. In: Pinto TJA, Kaneko TM, Pinto AF, editors. Controle biológico de qualidade de produtos farmacêuticos, correlatos e cosméticos. 4th ed. Barueri: Manole, 2015. pp. 129-51.

Shah N, Naseby DC. Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens Bioelectron. 2015;68:447-53.

Song C, Li J, Liu J, Liu Q. Simple sensitive rapid detection of Escherichia coli O154:H7 in food samples by label-free immunofluorescence strip sensor. Talanta. 2016;156-157:42-7.

Taguri T, Oda Y, Sugiyama K, Nishikawa T, Endo T, Izumiyama S, Yamazaki M, Kura F. A rapid detection method using flow cytometry to monitor the risk of Legionella in bath water. J Microbiol Methods. 2011;86(1):25-32.

Tidwell JE, Dawson-Andoh B, Adedipe EO, Nkansah K, Dietz MJ. Can near-infrared spectroscopy detect and differentiate implant-associated biofilms? Clin Orthop Relat Res. 2015;473(11):3638-46.

Tong MY, Jiang C, Armstrong DW. Fast detection of Candida albicans and/or bacteria in blood plasma by "sample-self-focusing" using capillary electrophoresis-laser-induced fluorescence. J Phar Biomed Anal. 2010;53(1):75-80.

Trullols E, Ruisánchez I, Rius FX. Validation of qualitative analytical methods. Trends in Anal. Chem. 2004;53(2):137-145.

Ugarova NN, Lomakina GY, Modestova Y, Chernikov SV, Vinokurova NV, Otrashevskaya EV, Gorbachev VY. A simplified ATP method for the rapid control of cell viability in a freeze-dried BCG vaccine. J Microbiol Methods. 2016;130:48-53.

United States Pharmacopeia. 61 Microbiological examination of nonsterile products: microbial enumeration tests. Rockville: United States Pharmacopeial Convention, 2016a.

United States Pharmacopeia. 62 Microbiological examination of nonsterile products: tests for specified microorganisms. Rockville: United States Pharmacopeial Convention, 2016b.

United States Pharmacopeia. 1223 Validation of alternative microbiological methods. Rockville: United States Pharmacopeial Convention, 2016c.

Varella, C. A. A. Análise Multivariada Aplicada às Ciencias Agrárias. Rio de Janeiro, 2010.

Verdonk GP, Willemse MJ, Hoefs SG, Van Den Heuvel ER. The most probable limit of detection (MPL) for rapid microbiological methods. J Microbiol Methods. 2010;82(3):193-7.

Wu SM, Chen J, Ai XX, Yan ZY. Detection of Escherichia coli in drugs with antibody conjugated quantum dots as immunofluorescence probes. J Phar Biomed Anal. 2013;78-79:9-13.

Downloads

Published

2022-11-09

Issue

Section

Original Article

How to Cite

Rapid identification of microbial contaminants in pharmaceutical products using a PCA/ LDA-based FTIR-ATR method. (2022). Brazilian Journal of Pharmaceutical Sciences, 57. https://doi.org/10.1590/s2175-97902020000318899