PALEOMAGNÉTISM AND GEOCHRONOLOGY OF MAFIC DIKES FROM THE REGIONS OF SALVADOR, OLIVENÇA AND UAUÁ, SÃO FRANCISCO CRATON, BRAZIL: PRESENT STAGE OF THE USP/PRINCETON UNIVERSITY OLL REGNATION.

M.S.D'Agrella Filho 1.G.Paccal T.C.Onstot² P.R.Renne² W.Telswinz

INTRODUCTION

The purpose of the USP/Princeton University collaboration project is a paleomagnetic and geochronological study of Precembrian metamorphic units and aeroogenic Proterozoic intrusives from selected areas in Brazil. The Instituto Astronómico e Geofísico of the Universidade de São Paulo has been carrying out the paleomagnetic analyses whereas geochronological determinations using the "Pap" As method are being made at Princeton University with the collaboration of the Instituto de Geoffeincia of USP.

A total of 799 oriented rock samples has been collected from metamorphosed and unmetamorphosed dises and also from the basement rocks in the regions of fluad (131 samples). Salvador (200 samples) and Ilhéus-Olivença-Itaju do Colônia (341 samples) in the State of Babita and west of Reio Notronte (107 samples). State of Miras Gerais (Fig. 1).

The present status of the paleomagnetic and geochronological studies of these rocks is presented here, including results obtained up to now and an analysis of paleogeographic and occtectoric [molications.]

Region Nest of Belo Borizante - The paleomagnetic analysis of dikes from this region reveals a complex angestic behaviour when solutied to laboratory treatments. Samples from the same dike often show stable directions which, however, are not coherent. This has probably been caused by the complex thermo-tectonic history of this region in which several thermal events (from Trans-Reanzonian to Brasiliano) have been recorded. Samples from the few dikes which present coherent paleomagnetic directions are being prepared for "**Okry79Ar age determinations."

Residn - Sweples from 20 dikes (two of them metamorphosed) collected near the tom of Usual presented good magnetic stability to alternating field (#?) and thermal treatment and yelobed directions with declination around 15° and positive inclination (Fig. 2a). Some of these samples are being prepared for 40a-75° as gas determinations.

T Departamento de Geofísica, Instituto Astronômico e Geofísico da USP, Caixa Postal 30627, 01051 São Paulo, SP. Brasil.

² Dept. of Geological and Geophysical Sciences, Princeton University, 08544 Princeton, New Jersey, USA.

³ Departamento de Geologia Geral, Instituto de Geociências da USP, Caixa Postal 20899, 01498 São Paulo. SP. Brasil.

Salvador Region - Samples from 24 unmetamorphosed dikes were collected along the coast (18 dikes) and at the Omacil (1 dike) and Valéria (5 dikes) quarries. These samples showed three different groups of magnetization directions (Fig. 2b). The first group (most of the dikes) corresponds to declinations around 110° and negative inclinations or declinations of about 290° and positive inclinations (circles in Fig. 2b). The five dikes at the Valéria quarry presented declinations around 105° but with lower inclination (squares in Fig. 2b). The third group is represented by four dikes with declinations around 170° and positive inclinations (triangles in Fig. 2b).

Biotite grains from the basement rock about 90 cm from the contact with a dike approximately 30 m thick near the Hotel Meridien yielded an AOAr/39Ar age of 1021 + 8 Ma. Planicclase from the dike itself vielded 1003 + 33 Ma by the same method. The magnetization direction of the dated dike belongs to the first group in Figure 2b, with negative inclinations.

Region of Ilhéus-Olivenca-Itaiu do Colônia - Samples from 65 dikes were collected along the beaches of Olivenca (47 dikes) and Ilhéus (18 dikes) and also from 32 dikes along highway BR-101 between Camacă and Itabuna and near the town of Itaju do Colônia (Itaju do Colônia swarm). A detailed description of laboratory and statistical procedures used in the analysis of samples from these dikes can be found in D'AGRELLA FILHD et al. (submitted). For several samples it has been possible to isolate a stable direction after AF and thermal treatments (Fig. 3). The samples from Ilhéus presented only directions with negative inclination, whereas reverse and normal directions were found for samples from Olivença and

Itaju do Colônia.

A⁰Ar/⁹⁹Ar geochronological determinations were carried out using the minerals Ilhéus (direction with negative inclination) and from another contact with a dike from Olivença (positive inclination direction). RENNE et al. (submitted) considered the ages on biotite grains as the most representative of the dike intrusions: 1077 + 25 Ma and 1078 + 18 Ma for Olivença and 1011 + 24 Ma for Ilhéus. Plagioclase from an Ilhéus dike yielded an age of 1012 + 24 Ma.

DISCUSSION

Table 1 presents a summary of paleomagnetic results obtained for the analyzed mafic dikes. The paleomagnetic poles calculated for each direction group (reverse and normal) defined by the paleomagnetic analysis and its associated age are indicated in the table.

A K/Ar determination and two preliminar Rb/Sr diagrams suggest a Trans-Amazonian age for the Uauá basic dikes (Table 1). Taking into account a pre-drift reconstruction, the pole for the Uauá dikes is compared with an apparent polar wander (APW) path constructed for Africa for the interval 2.3-1.9 Ga (McWILLIAMS, 1981). This APW path also suggests a Trans-Amazonian age for the magnetization (around 1.9 Ga) which, however, is slightly lower than existing geochronological determinations (Table 1).

The Salvador paleomagnetic poles (SN, SR - Table 1) corresponding to the directions represented by circles in Figure 2b fall on the APW path defined by the Ilhéus-Olivenca-Itaju do Colônia poles presented in Table 1 (Fig. 5, D'AGRELLA FILHO et al., submitted). At least

two polarity intervals are defined by the poles of Figure 5.

Two important implications can be inferred from these results: the first concerns the late Precambrian glaciation represented by several formations in central-eastern Brazil (Macaúbas Group, Bebedouro Formation, Ibiá Formation, etc.). An age between 950-1000 Ma has been suggested for these glacial deposits (KARFUNKEL & HOPPE, 1988). Figure 5 shows that the

Sio Francisco Craton was near the pole during the Ilhéas-Ollverqa-Itaju do Coltoia and Salvador mafic dide intrusions. Paleomogetic results are consistent with the paleogographic models for the NaceAbs Group (CARFINELS & MEPFE, 1988). It should be remethered, however, that the dides one intrude any of the glacial deposits, which suggests that the dides may be slightly older; RFASF datings of clay fractions from the Bebeduro Formation samples slightly value; RFASF datings of clay fractions from the December of Participation of the Carton Control of the Control of formations of glacial origin present low paleomographic inclinations suggesting that glacial deposition also took place at those paleomographic participations.

The second implications is of a tectonic nature (RGNAC et al., submitted). Figure 6s shows that poles for the Kalahari Craton in southern Africa (Unkondo dolerites - UO, post-Naterberg dolerites - NO, Kruger Park Cabbor - CK, Koras Group - KO) and the Oliverça pole (GR) for positive inclination dikes all present the same age but do not coincide geographically. Also a pole determined for the hammaga Zore entemorphic rocks (CZ) coincides with the GR pole. However, RENNE et al. (op. clt.) present an age of 1000 \pm 20 Mg $(^{40}R)^{20}R_{11}$ for the cooling-metamorphis of these rocks. The time and space agreement of poles from the São Francisco, Congo and Kalahari Cratons is obtained through a 90 counterclockwise rotation of the Kalahari Craton around an Euler pole at $(^{9}N, 30^{9})^{6}$ Equ. 60).

ACKNOWLEDGEMENTS

The funding for this research was provided by CNPq, FAPESP and FINEP from Brazil and NSF (Grants EAR-8451696 and EAR-8805529) from the USA.

REFERENCES

- D'AGRELIA FILHO, M.S.; PACCA, I.G.; RENNE, P.R.; ONSTOTI, T.C.; TELNETRA, W. (submitted for publication) Paleomagnetism of Middle Proterozoic (1.01 to 1.08 Ga) mafic dikes in southeastern Bahla State - São Francisco Craton, Grazil. Earth Planetary Science Letters.
- KARFUNKEL, J. & HOPPE, A. (1988) Late Proterozoic glaciation in central-eastern Brazil: synthesis and model. Palaeogeography, Palaeoclimatology, Palaeoecology, 65:1-21.
- RENE, P.R.: OSSIGIT, I.C.: D'AGRELA FILMO, M.S.; PRCDA, I.G.; TELEZIRA, M. (submitted for publication) Dating of 1.0-1.1 Ga magnetizations from the SBP fracisco and Kalari Cratons: tectonic implications for Pan-African and Brasiliano mobile belts. Earth Plametary Science Letters.
- McWILLIAMS, M.O. (1981) Palaeomagnetism and precambrian tectonics evolution of Gondwana. In: KRONER, A. (ed.) Precambrian Plate Tectonics. Amsterdan, Elsevier, p.649-687.

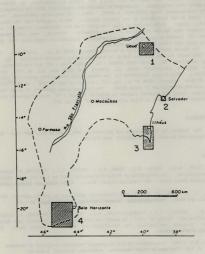


Figure 1 - Sample localities: 1. Uauá region; 2. Salvador region; 3. Ilhéus-Olivença-Itaju do Colônia region; 4. West of Belo Horizonte region. The dashed line delimits the São Francisco Craton.

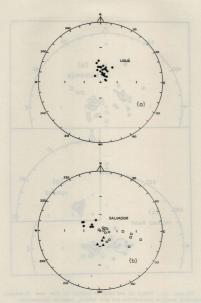


Figure 2 - Uauá (a) and Salvador (b) dike mean directions. Solid symbols represent positive inclinations and open symbols, negative inclinations.

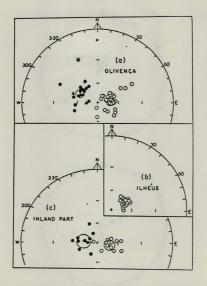


Figure 3 - Olivença (a), Ilhéus (b) and Itaju do Colônia (c) dike mean directions. Solid symbols represent positive inclinations and open symbols, negative inclinations.

Figure a. 1.08-1.01 Ga RPW path for the Sio Franciso Craton defined by the paleomagnetic poles from links (liN), Olivença (ON, OR), Itaju do Colônia (IDR, IDN) and Salvador (SR, SN - directions represented by circles in Fig. 20. Poles S2 and 53 were determined on the basis of the directions represented by squares and triangles in Figure 2b, respectively. Solid symbols represent poles obtained with downward directions and ones symbols, upward directions. Half-filled symbols represent poles within both polarities (lozenge - Itaju do Colônia; circle - Salvador). South America is in its present possition.

Figure 5 - (a) Comparison between the São Francis co, Compa and Kalahari poles of similar ages (RE). Ne et al., en prop.), in a pre-drift situation. (b) Hypothetical reconstruction which rotates the Kalahari Craton (K), Including the Namaqua Zone (CZ) and corresponding paleomagnetic poles, about a rotation pole located at OW, 30FE with the Com go/São Francisco Craton (C and SF) fixed in position of Figure 5a.

Table 1 - Paleomagnetic results.

A class) Lo	K A ₉₅ (*)	MAG
90 11 284.0 66.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54	١		(84)
29. 00 11 229.3 60.7 20.4 6.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		1	1012 + 24
20	9.5 280.2	17.0 8.6	1078 + 18
10			-
103 10 280.3 70.1 24.9 9.9 10.0 10.0 10.0 10.0 10.0 10.0 10.			
Discourse (1) (2) (2) (3) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	-5.4 290.3	10.5 15.6	
(ii) 13 97.7 -73.4 27.4 8.1 10 20 23 99.0 -71.9 27.2 5.9 5 4 110.2 -79.2 44.9 8.4 10 4 200 4 200 400 700 700 700 700 700 700 700 700 7			
20 10 23 99.0 71.9 27.2 5.9 SN 8 110.2 79.2 44.9 8.4 co 4 792 6.7 8.4	9.5 111.6	10.1 13.8	-
IC 23 99.0 -71.9 27.2 5.9 SN 8 110.2 -79.2 44.9 8.4 co c co n cc no n cc n no n n c			
SN 8 110.2 -79.2 44.9 8.4		10.6 9.8	1
A 7 07 0 22 A 600 P	6.4 122.4		1001 ± 8
000			-0
-74.1 41.9 6.5	- P		
Salvador - S2 5 104.6 -36.0 35.6 13.0	-8.3 74.9	40.1 12.2	
170.4 68.3 90.5 9.7	-		
68.5 49.0 4.7	-		K/Ar:2014 + 77

.